
Global Modeling Initiative:
Tutorial and User’s Guide

NASA Center for Computational Science (NCCS)
NASA Goddard Space Center

Greenbelt, MD 20771

This document was written by:

Jules Kouatchou
Bigyani Das
Hamid Oloso

with the help of

Dan Bergmann
John Tannahill
Ghalib Bello

October 15, 2004

ii GMI Tutorial

Abstract

In this report, we provide a description of the GMI code. It is intended to help users in
the GMI community who wish to obtain, install, compile, run, and modify the code. We
present the code organization and data structures, procedures on how to manipulate the
code, and its parallel performance.

Examples introduced here were carried out on the Compaq SC45, the SGI O3600 and a
linux cluster.

iii

Contents

1 Introduction 1

2 Structure of the Code 3

2.1 Components of GMI . 3

2.2 Directory Structure of The Code . 4

2.3 Coding Principles . 6

2.4 General Flowchart of the Code . 7

3 Installation and Testing 11

3.1 Getting the Code . 11

3.2 Model Files and Directory Structure . 12

3.3 Setting Environment Variables . 12

3.4 Code Installation and Basic Test Run . 14

3.4.1 Compiling the model . 14

3.4.2 Testing the Executable . 14

3.5 Summary of the Necessary Steps . 16

4 GMI Files 18

4.1 Input Namelist Files . 18

4.2 Input Datasets . 20

4.2.1 netCDF Input Files . 20

4.2.2 ASCII Input Files . 21

4.2.3 Input Files Needed for ”troposphere” Chemical Mechanism 21

4.3 Output Files . 22

4.3.1 ASCII Diagnostic Output File . 22

4.3.2 netCDF Output Files . 23

5 Performing Specific Runs 24

5.1 Specific Runs . 24

5.2 Restart Runs . 26

6 Making Changes 29

6.1 Coding Consideration . 29

6.2 Adding Chemical Mechanisms . 29

6.3 The Make System . 30

iv

CONTENTS

6.4 Making Changes . 30
6.5 Debugging the Code . 32

7 Script Tools 33

8 How to Use CVS? 36
8.1 What is CVS? . 36
8.2 How to Use CVS? . 37
8.3 Use CVS to Keep Up to Date with GMI Source Code Changes 37
8.4 Use CVS to Track Both New Releases and Your Changes 41
8.5 Where To Obtain CVS? . 42

9 Parallel Performance 43
9.1 Description of the Platforms . 43
9.2 Parallel Performance . 43

9.2.1 Description of the Test Cases . 43
9.2.2 Model Performance . 44

9.3 Profiling the Code . 44

A Include Files 50

B Single/Multiple Processor Runs 52

C NetCDF Files 53
C.1 Contents of netCDF Files . 53
C.2 Output Frequency of NetCDF Files . 53

D New Features 56
D.1 Diagnostics . 56

D.1.1 Choice of Species for Surface Emission Diagnostics 56
D.1.2 Choice of Species for Dry Deposition Diagnostics 57
D.1.3 Choice of Species for Wet Deposition Diagnostics 58
D.1.4 Choice of Species for Tendency Diagnostics 58
D.1.5 Choice of Vertical Levels . 59
D.1.6 Noon Variables . 59

D.2 Tracer Runs . 60
D.3 Addition of FastJX . 61

E Input Namelist Variables 62

GMI Tutorial v

List of Tables

2.1 Chemical mechanisms . 4
2.2 GMI code directories . 6

9.1 Features of the different platforms. 44
9.2 Information on the test cases. 44
9.3 10-day simulation (46 × 72 × 28): wall clock time (in seconds) as function of

the number of processors. 45
9.4 31-day simulation (46 × 72 × 46): wall clock time (in seconds) as function of

the number of processors. 45
9.5 7-day simulation (46 × 72 × 46): wall clock time (in seconds) as function of

the number of processors. 46
9.6 Number of cycles and computer operations. 46
9.7 One-day simulation of the combined strat/trop chemical mechanism: breakup

of the resources consumed by the major routines. 47
9.8 31-day simulation of tropospheric chemical mechanism: timing breakup of

the different operators. 48

C.1 General netCDF files. 54
C.2 Frequency of netCDF files. 55
C.3 Namelist variables to produce netCDF files. 55

E.1 Namelist variables . 73

vi

List of Figures

2.1 Flowchart of the main program . 8
2.2 Flowchart of the time stepping routine. 9
2.3 Flowchart of the chemistry operator. The numbers in bold are the values of

the namelist variable chem opt that determines the chemistry option.. . . . 10

vii

Chapter 1

Introduction

The Global Modeling Initiative (GMI) 1 was initiated under the auspices of the Atmospheric
Effects of Aircraft Program (AEAP) in 1995. The goal of GMI is to develop and maintain
a state-of-the-art modular 3-D chemistry transport model (CTM) that can be used for
assessment of the impact of various natural and anthropogenic perturbations on atmospheric
composition and chemistry, including, but not exclusively, the effect of aircraft.

More recently, ACMAP has selected the approach of GMI to serve both as an assess-
ment facility and a testbed for model improvements for future assessment in all areas of
atmospheric chemistry. The goals in the design of GMI as assessment tool are [4]

1. The model should be well-characterized and thoroughly tested against observations.

2. The model should be able to test and compare a diversity of approaches to specific
processes by being able to easily swap modules containing different formulations of
chemical processes, within a common framework.

3. The model should be optimized for computational efficiency and be able to run on
different platforms.

4. Model results should be examined by a large representation of the scientific commu-
nity, thus facility concensus on the significance of assessment results.

5. Ultimately, the model integartion could provide a unique assessment capability for
other anthropogenic impacts of concern, by providing a testbed for other algorithms
and intercomparisons used in assessment of those issues.

Many elements of the GMI model address these goals. The GMI model is a modular
chemistry-transport model (CTM) with the ability to carry out multi-year assessment sim-
ulations as well as incorporate different modules, such as meteorological fields, chemical
mechanisms, numerical methods, and other modules representing the different approaches
of current models. This capability facilitates the understanding of the differences and un-
certainties of model results.

The testing of GMI results against observations is a high priority of GMI activities. Sci-
ence Team members contribute by either supplying a particular module and/or contributing

1http://gmi.gsfc.nasa.gov/gmi.html

1

Chapter 1. Introduction

to the analysis of the results and comparison with atmospheric observations [3, 5]. Appli-
cation of the model to the potential impacts of stratospheric aircraft emissions is presented
in [4]. The model has been employed to investigate the effects of stratospheric aircraft
emissions on the polar stratospheric clouds [2] and simulate ozone recovery over a 36-year
time period [1].

Besides acting as a testbed for different modules, GMI will also act as a 3-D assessment
facility. The GMI modular code is currently implemented at NASA/Goddard Space Flight
Center (the core institution). The core institution is responsible for:

• Integrating and testing component of the GMI model,

• Maintaining coding standards which will make the model portable to different plat-
forms

• Carrying out assessment calculations, and

• Providing first-order results and diagnostics for analysis by team members.

The current version code has been developed to run on a variety of computing platforms,
both with single and multiple processors (SGI Origin series,HP Compaq SC45, Beowulf
clusters, single processor workstations, etc.).

This report is intended to familiarize users with the GMI code. Users will be able to

• Have information on the code structure (Chapter 2).

• Obtain instrutions on how to obtain the code, install it, compile it, run it on any
platform (Chapter 3).

• Have a knowledge of all the input and output files involved in the code (Chapter 4,
Appendix C and Appendix E).

• Carry out specific and restart runs (Chapter 5).

• Learn how to make changes in the code (Chapter 6).

• Execute useful script tools needed for instance to search for words, to produce restart
input namelist files, etc. (Chapter 7).

• Learn basic CVS commands (Chapter 8).

• Analyze the parallel performance of the code (Chapter 9).

• Be familiar with include files used to select the desired architecture, to set up compi-
lation options, etc. (Appendix A).

• Know how to carry out a single or multiple processor run (Appendix B).

• Use new features in the code (Appendix D).

2 GMI Tutorial

Chapter 2

Structure of the Code

2.1 Components of GMI

The modules that make up the GMI assessment model are [5]:

1. Input meteorological data coming from three major Global Circulation Models (from
NCAR, GISS and DAO). Data from all these input sets included horizontal U and V
winds, temperature, and surface pressure.

2. Advection algorithm to transport trace species

3. Mass tendencies

4. Numerical schemes for chemistry solutions

5. Chemistry mechanism

6. Heterogeneous processes

7. Photolysis

8. Diagnostics

9. Tropospheric treatment

10. Initial conditions

11. Boundary conditions

All the above modules have multiple options. The GMI model incorporates four chemical
mechanisms:

• Aerosol

• Stratosphere

• Troposphere

• Combined stratostophere/troposphere (strat trop)

3

Chapter 2. Structure of the Code

aerosol stratosphere troposphere strat trop

species 30 57 86 125
thermal reactions 200 122 224 322
photolytic reactions 61 44 50 82

Table 2.1: Chemical mechanisms

A summary of the mechanisms appears in Table 2.1.

2.2 Directory Structure of The Code

The top directory of the GMI code is gem/ which contains the sub-directories

• actm/: for the atmospheric transport model

• bin/: location of the code executable

• doc/: general information about the code and how it is to be used

• esm/: Earth System Modeling package

• esm tools/: tools for the ESM package

• include/: general-purpose header files for platform selection, compilation selection,
message passing options, etc (see Appendix A).

In Table 2.2, we give more details on the structure of each of the above directories.

Directory Name Synopsis

actm Atmospheric Chemistry Transport Model

actm/gmimod

actm/gmimod/Other

actm/gmimod/Other/doc README files

actm/gmimod/Other/misc

actm/gmimod/Other/scripts Script files performing various functions
(see Chapter 7)

actm/gmimod/Other/test

actm/gmimod/Other/test/nopar

actm/gmimod/Other/test/nopar/Old

actm/gmimod/Other/test/nopar/infiles Sample input namelist files

actm/gmimod/Other/test/nopar/outfiles ASCII output files for test cases in infiles/

actm/gmimod/Other/test/par

actm/gmimod/Other/test/par/infiles Sample input namelist files

actm/gmimod/Other/test/par/outfiles ASCII output files for test cases in infiles/

4 GMI Tutorial

2.2. Directory Structure of The Code

actm/gmimod/advec Advection operator module

actm/gmimod/advec/dao2advec DAO advection routines

actm/gmimod/advec/dao2utils Advection utility routine computing,
courant numbers, Divergence, etc.

actm/gmimod/advec/include Advection include file

actm/gmimod/chem Chemistry operator package

actm/gmimod/chem/aerosol Aerosol chemistry

actm/gmimod/chem/aerosol/include setkin Include files for aerosol

actm/gmimod/chem/aerosol/setkin Routines for rate constants and rates of kinetic

actm/gmimod/chem/include Chemistry include file

actm/gmimod/chem/sad Aerosol surface area density and condensed
phase mixing ratio modules

actm/gmimod/chem/smv2chem Chemistry solver routines

actm/gmimod/chem/strat trop Strat/Trop chemistry

actm/gmimod/chem/strat trop/include setkin Include files for the combined strat/trop

actm/gmimod/chem/strat trop/setkin Routines for rate constants and rates of kinetic

actm/gmimod/chem/stratosphere Stratospheric chemistry

actm/gmimod/chem/stratosphere/include setkin Include files for stratosphere

actm/gmimod/chem/stratosphere/setkin Routines for rate constants and rates of kinetic

actm/gmimod/chem/sulfur Routines for sulfur chemistry

actm/gmimod/chem/troposphere Tropospheric chemistry

actm/gmimod/chem/troposphere/include setkin Include files for troposphere

actm/gmimod/chem/troposphere/setkin Routines for rate constants and rates of kinetic

actm/gmimod/comm MPI communication routines

actm/gmimod/control Routines defining ACTM procedures
(init, advance, final)

actm/gmimod/convec Convection operator package

actm/gmimod/depos Deposition operator package

actm/gmimod/depos/include

actm/gmimod/diffu Diffusion operator package

actm/gmimod/emiss Emission operator package

actm/gmimod/emiss/Harvard Harvard emission routines

actm/gmimod/emiss/include

actm/gmimod/emiss/llnl LLNL emission routines

actm/gmimod/in out Model input/output routines

actm/gmimod/include

actm/gmimod/include data Include data files

actm/gmimod/mem manage Dynamic memory allocation routines

actm/gmimod/phot Photolysis “operator” package

actm/gmimod/phot/fastj Fast-J routines

actm/gmimod/phot/include

actm/gmimod/phot/lookup Routines implementing the photolysis
lookup table

GMI Tutorial 5

Chapter 2. Structure of the Code

actm/gmimod/phot/utils

actm/gmimod/step GMI time stepping routine and control routines
for operators (advection, chemistry, etc.)

actm/gmimod/trans UCI transport package

actm/gmimod/trans/include

actm/gmimod/trans/ucitrans

actm/gmimod/trans/Uci Data

actm/lib

bin Location where the executable is placed

doc General information on gem/ and how it is used

esm All the esm-level source code and include file.

esm/comm MPI communication routines for ESM

esm/control Routine defining ESM procedures
(generate, advance, terminate)

esm/in out Routine reading in the namelisted data for ESM

esm/include

esm/lib

esm/main Main program of the code (esm main.F)

esm/mem manage Routines for dynamic allocations of arrays
for ESM

esm/utils Utility routines such as timing, performance,
statistics, flushing the buffer, etc.

esm tools All the esm tools source code and include files

esm tools/baseline

esm tools/fi Routine for assigning unit numbers to
input/output files.

esm tools/include

esm tools/lib

include General-purpose header files that are used
throughout the code (see Appendix A).

Table 2.2: GMI code directories

2.3 Coding Principles

A ”.F” (Fortran code) or a ”.c” (C code) suffix denotes source code files. The capital ”F”
suffix indicates that the Fortran source contains preprocessing directives. Files named with
a ”.h” suffix are header files that contain preprocessing directives, variable declarations,
parameter definitions, and common block definitions. Contents of selected header files are
included via #include statements at the beginning portion of each of the ”.F” and ”.c”
files.

6 GMI Tutorial

2.4. General Flowchart of the Code

To enable multiyear chemistry simulations, the GMI core model was parallelized to
make use of the most powerful computational platforms available. The parallel strategy
uses a two-dimensional longitude/latitude domain decomposition whereby each subdomain
consists of a number of contiguous columns having a full vertical extent. Processors are
assigned to subdomains, and variables local to a given package/subdomain are stored on the
memory of the assigned processor. Data are transmitted between computational processes,
when needed, in the form of messages. The number of meshpoints per subdomain may not
be uniform, under the constraint that the decomposition be logically rectangular. The choice
to decompose in only two dimensions is based on the fact that chemistry, photolysis, and
cold sulfate algorithms make up the vast majority of the computational requirements and
are all either local or column calculations. These computations require no communication
with neighboring grid zones and hence maximize the parallel efficiency [5].

2.4 General Flowchart of the Code

In this section, we give through a flowchart the major routines called in the execution of
the GMI code. We start from the main program and go down to the GMI time stepping
routine.

The main program is Esm Main (filename ./esm/main/esm main.F). This calls routines
to initialize the MPI programming environment, to control the ESM package and to close
the MPI programming environment (see Figure 2.1). The control routine (Esm control) for
the ESM package calls routines to set up ESM environment (Esm generate) , to advance
physical process components of ESM (Esm advance) and to terminate the ESM simulation
(Esm terminate). The routine Esm advance itself points to Gmimod in order to move
forward in time the nodel simulation: the met data are updated (as needed) and the time
stepping routine is called.

The most important calculations done in the time stepping routine appear in Figure
2.2. The figure only shows the main components for the LLNLTRANS Transport case
(trans opt=1 in the namelist file). We observe that the major operators (emission, diffusion,
advection, convection, deposition and chemistry) are executed here.

A flow sequence for the chemistry operator is shown in Figure 2.3. It is important to
note that

• The package Fast-J or the lookup table is employed in ”Update photolysis rate con-
stants” which computes the rate constants Qj.

• The setkin routine Kcalc for calculating and returning rate constants (Qk) is called
in the box ”Update the thermal rate constants”.

• The chemistry solver SMVGEAR II is used in the box labeled ”Solve the chemical
ODEs”.

GMI Tutorial 7

Chapter 2. Structure of the Code

Main Program

esm_main.F

Control and update the met data

Increment time step

Step the simulation one time step
 call Gmi_step

Advance the time in Gmimod

Terminate the ESM simulationAdvance various physical

process components of ESM

ESM control routine
Initialize the MPI

programming environment

Read input namelist file

Choose ESM modules

Close the MPI
programming environment

Figure 2.1: Flowchart of the main program

8 GMI Tutorial

2.4. General Flowchart of the Code

Compute pressure at the
tropopause, total mass and fix
values of some const species

Synthetic Species Operator Chemistry Operator Deposition operator

Convection OperatorGravitational settling calculationsAdvection Operator

Emission Operator Diffusion Operator

Read in a full set of met data
if necessary

Calculate atmospheric pressure
at the center and at the edge of

each grid box
Initialization phase

GMI Time Stepping Routine

 Gmi_Step

Figure 2.2: Flowchart of the time stepping routine.

GMI Tutorial 9

Chapter 2. Structure of the Code

Quadchem Sulfur Chemistry Update the thermal
rate constants

Cycle chemistry solver
using rate constantsphotolysis and thermal processes

Accumulate the rates of the

Initialization of the ODE
solver SmvgearII

Change units from mixing
ratio to concentration

Update const based on
surface emissions

Solve the gas−phase
chemical equations

Change units from con−
centration to mixing ratio

Determine block size for
chemistry or stiffness

Solve the chemical ODE
for each block

Reorder grid−cells from
least to most stiff

Radon/Lead chemistrySimple loss chemistryBerylium chemistryImpose the BCs if they
exist

Update photolysis rate
constants

Surface area density
calculation

Chemistry Operator

Calculate the density at
the center of grid boxes

Set (and rearrange)
photofrequencies Compute kinetic reactions Solve the chemical ODEs Replace block concentrations

into domain concentrations

6 3 1

7 8 2

Figure 2.3: Flowchart of the chemistry operator. The numbers in bold are the values of the
namelist variable chem opt that determines the chemistry option..

10 GMI Tutorial

Chapter 3

Installation and Testing

This chapter is written to help new users to install and test the GMI code. We provide
specific instructions on how to obtain the code, to properly set environment variables, to
select the model configuration, to choose a particular platform, to compile the code and to
perform basic test runs. The focus of the document is for the installation and execution
of the GMI code on halem, daley and thunderhead. The same procedures can easily be
applied to any platform.

To get and install the GMI code, the following system software is needed:

• CVS (see Chapter 8 for instruction)

• F90/95 (ideally ifc for intel)

• C (ideally icc for intel)

• MPI needed only if running the message passing version of the code

• netCDF (version 3.4 or higher). The location of netCDF should be provided in the
file gem/include/gem config.h before compiling the code (see Section 3.3 for details).

• make

• makedepend (generally in /usr/bin/X11)

• perl

• a debugger (if possible)

During this process of installing and testing the code, it is assumed that Cshell is the
default shell employed by the user. In fact, the GMI environment variables required for
these procedures are set up using Cshell.

3.1 Getting the Code

To obtain the GMI code,

• Select the directory where you want to install the GMI model, say MYGMI/

11

Chapter 3. Installation and Testing

• Get the latest version of the model from the cvs repository at sourcemotel by typing
the command lines:

%setenv CVS_RSH ssh

%cvs -d usrid@sourcemotel.gsfc.nasa.gov:/cvsroot/gmi co gmi_gsfc

Here usrid is your login name on sourcemotel. You will be asked to provide your password
on sourcemotel. The directory gmi gsfc/, which is the main GMI directory, will then
appear.

3.2 Model Files and Directory Structure

Move into gmi gsfc/

%cd gmi_gsfc

%ls

You will find (in gmi gsfc/) the files and directories:

CVS/ README.install gem/ gmi_install

README.first cshrc.ggmi gmi_data/ login.ggmi

The top directory of the GMI code is gem/ which contains sub-directories presented in
Chapter 2.

3.3 Setting Environment Variables

In the directory gmi gsfc, read all the README files by starting with README.first file
that guides a new user to take the required steps for installing and running the GMI code.
The top portions of the files cshrc.ggmi and login.ggmi include instructions for setting up
the environment variables which are discussed in this section.

Edit the file cshrc.ggmi

• Select the chemistry mechanism you want to consider by setting the variable CHEM-
CASE. Currently four mechanisms are available: troposphere, aerosol, stratosphere,
and strat trop (for the combined stratosphere/troposphere). If you want to have
stratosphere for instance, uncomment the corresponding line to have

setenv CHEMCASE stratosphere

• For the platform you want the GMI model to run on, update the variables GEMHOME
(location of the main model directory) and GMI DATA (directory where the input
data to test the installation are located):

setenv GEMHOME ~/MYGMI/gmi_gsfc/gem

setenv GMI_DATA ~/MYGMI/gmi_gsfc/gmi_data

12 GMI Tutorial

3.3. Setting Environment Variables

Copy the files cshrc.ggmi and login.ggmi to your home directory

%cp cshrc.ggmi ~/.cshrc.ggmi

%cp login.ggmi ~/.login.ggmi

Go to the directory gem/include/ and edit the file gem sys options.h. Modify the line

#define ARCH_OPTION ARCH_XXXX

to select the architecture you want to run the code on. XXXX is COMPAQ for halem,
SGI ORIG for daley, and INTEL for thunderhead.
Set the variable MSG OPTION to determine if you want a single processor version of the
code

#define MSG_OPTION MSG_NONE

or a multiple processor version (using MPI) of the code

#define MSG_OPTION MSG_MPI

You may also choose to edit the file gem options.h to select debugging, optimization,
or profiling options. If necessary, provide the paths to MPI and netCDF include files and
libraries in the file gem config.h. Some compilation options may have to be changed in the
same file. Go to your home directory and edit the file .cshrc

%cd ~/

%vi .cshrc

Include the lines

setenv CVS_RSH ssh

setenv ARCHITECTURE ARCH_XXXX

if (-e ~/.cshrc.ggmi) then

source ~/.cshrc.ggmi

endif

You can also edit the .login file and add the lines

if (-e ~/.login.ggmi) then

source ~/.login.ggmi

endif

Update the changes made in the files .cshrc and .login by typing

%source .cshrc

%source .login

The setting of the environment variables ended with the previous two commands. The
setting automatically creates aliases that allow the user to easily access the code directories
and to execute scripts (see Chapter 7). For instance, by typing:

• cd gem or cd $GEMHOME, you will get to the code main directory.

GMI Tutorial 13

Chapter 3. Installation and Testing

• cd phot, your will move to the directory containing the photolysis operator package.

• cd chem, your will move to the directory containing the chemistry operator package.

• seabf my words, you will search through all the Gem/Gmimod ”.F” files for the string
my words.

3.4 Code Installation and Basic Test Run

Go back to the working directory MYGMI/gmi gsfc/gem/:

%cd gem

3.4.1 Compiling the model

To compile the code on thunderhead you first need to select the proper MPI environment
variables. To view what is available, type

%mpi_env -p

Since we want to run with intel, type

%mpi_env -c intel

to change the MPI environment to intel.
To compile the code on all the platforms, use the commands:

%mkmf

%make

The make command compiles and links the code. ”.f”, ”.o” and ”.a” files are created and
executable named gem is placed in the directory bin/.

Remark 1 On daley and thunderhead, you may get an error message caused by the fact
that the f90 compiler complains that lines in some Fortran files use more than 72 columns.
This is strange because the compilation options are properly set. To alleviate the problem,
edit the file where the compilation failed and break the line(s) (into several ones) causing
the problem.

3.4.2 Testing the Executable

To test the executable, we will use a sample namelist file coming with the code. For each
platform, we show examples of job script files (named gmitest.job) to test the executable.
On halem and daley you need to have your sponsor code account (type the command
getsponsor to obtain it).

It is assumed that the user wants to test the model from the directory /scratch/usrid
on daley, /scr/usrid on halem and /mnt/pvfs/pvfs1/usrid on thunderhead1.

1It is important to note that the model will only run on thunderhead from pvfs. In addition, the MPI
commands work only with bash shell. Please refer to http://newton.gsfc.nasa.gov/thunderhead/ for details.

14 GMI Tutorial

3.4. Code Installation and Basic Test Run

gmitest.job on daley

#!/bin/csh -fx

#PBS -N gmi_CO2run

#PBS -l ncpus=16

#PBS -l walltime=00:05:00

##PBS -l mem=2gb

#PBS -A a930b

#PBS -S /bin/csh

#PBS -V

#PBS -e error.file

#PBS -o output.file

#

cd /scratch/usrid

cp $GEMHOME/actm/gmimod/Other/test/par/infiles/dao2rn_dao46_06.in .

ln -s $GMI_DATA gmi_data

#

mpirun -np 16 $GEMHOME/bin/gem -d dao2rn_dao46_06.in

gmitest.job on halem

!/bin/csh

#BSUB -P a930b

#BSUB -J gmitest

#BSUB -n 16

#BSUB -W 00:20

#BSUB -q general_lng

#BSUB -o gmiout.%J

#BSUB -e gmierr.%J

#

cd /scr/usrid

cp $GEMHOME/actm/gmimod/Other/test/par/infiles/dao2rn_dao46_06.in .

ln -s $GMI_DATA gmi_data

prun -n 16 $GEMHOME/bin/gem -d dao2rn_dao46_06.in

Remark 2 Replace a930b in the above script files with your sponsor code account. Here
usrid is the user’s login name.

gmitest.job on thunderhead

Number of nodes, processes and minutes requested

Nno=8

Npr=16

Nmi=60

ltmbegin -n $Nno -m $Nmi

#

WORK_DIR=/home/usrid/MYGMI/gmi_gsfc/gem

RUN_DIR=/mnt/pvfs/pvfs1/usrid

EXE_DIR=/home/usrid/rhome/MYGMI/gmi_gsfc/gem/bin

GMI Tutorial 15

Chapter 3. Installation and Testing

cd $RUN_DIR

cp $WORK_DIR/bin/gem $EXE_DIR

cp $WORK_DIR/actm/gmimod/Other/test/par/infiles/dao2rn_dao46_06.in .

Submit the job

time ltmpi -n $Nno -t $Npr=16 $WORK_DIR/bin/gem -d dao2rn_dao46_06.in

End the session

ltmend

To submit the job script, do the following

On daley

%qsub gmitest.job

On halem

%bsub < gmitest.job

On thunderhead

%mkdir /home/usrid/rhome/MYGMI /home/usrid/rhome/MYGMI/gmi_gsfc

%mkdir /home/usrid/rhome/MYGMI/gmi_gsfc/gem

%mkdir /home/usrid/rhome/MYGMI/gmi_gsfc/gem/bin

%bash

%ltmsuper

%./gmitest.job

Remark 3 Though the thunderhead job script can only be submitted from the PVFS di-
rectory, the executable should not reside there. It is suggested to create the same directory
structure (location of the executable) on the development node and the execute nodes. This
explains the presence of the multiple mkdir commands.

When the job is complete, compare the new output result with the previous result:

diff dao2rn_dao46_06.asc \

$GEMHOME/actm/gmimod/Other/test/par/outfiles/dao2rn_dao46_06.asc

The matching results ensure the installation and compilation of GMI model is complete.

Remark 4 Due to the changes made within the code, it may turn out that the verification
process fails at the end of the run. That does not mean the installation of the code was
unsuccessful. A failure may be due to the fact that the latest version of the code contains
several updates (as a result of the bugs that were found). The comparison is done between
the output from the new code and the output of the original one (containing bugs).

3.5 Summary of the Necessary Steps

In this section, we give the list of steps needed to obtain, install and run the GMI code on
any platform.

1. Obtain the code (gmi gsfc release) from the cvs repository.

2. Move to the GMI working directory (gmi gsfc/).

16 GMI Tutorial

3.5. Summary of the Necessary Steps

3. Edit the file cshrc.ggmi to update the variables GEMHOME, GMI DATA and CHEMCASE.

4. Copy the files cshrc.ggmi and login.ggmi to .cshrc.ggmi and .login.ggmi in your home
directory.

5. Go to the directory include/ to edit the files gem sys options.h and gem config.h to
select the architecture and to update the compilation options respectively.

6. Go to your home directory to edit and source the files .cshrc and .login.

7. Type cd gem and compile the code by typing mkmf then make.

8. Select a test case and in your input namelist file, update the variable gmi data dir

providing the location of the input data.

9. Write a job script file and submit the job to run the executable.

GMI Tutorial 17

Chapter 4

GMI Files

4.1 Input Namelist Files

Input namelist files are generally named <problem name>.in. They allow many variables
to be changed without having to recompile or relink the code. Each namelist file is broken
into the categories

1. ESM SECTION

2. ACTM CONTROL SECTION

3. ACTM INPUT SECTION

4. ACTM OUTPUT SECTION

5. ACTM RESTART SECTION

6. ACTM ADVEC SECTION

7. ACTM CONVEC SECTION

8. ACTM DEPOS SECTION

9. ACTM DIFFU SECTION

10. ACTM EMISS SECTION

11. ACTM CHEM SECTION

12. ACTM PHOT SECTION

13. ACTM TRAC SECTION

Here are some basic requirements for editing namelist files:

• All namelist sections must be present and in proper order, even if no variable are
listed in them.

• Variable names must be exact and placed in the proper section.

18

4.1. Input Namelist Files

• Real numbers need a “d” exponent, even if it is “d0”.

• Put a comma after each variable entry except the last one.

• End each section with a “/”.

• Some variable settings are incompatible with each other. The code does checking
operations to catch these.

Remark 5 All REAL*8 namelist variables need to be input with a ”D” exponent (even if
it is D0). The defaults below do not contain the ”D” exponent, but be sure to add one to
all the real variables referenced in your namelist input file.

Appendix E gives a list of all the namelist variables, their types, and their description.
Additional information can be obtained from the routine Get Namelist located in the file
actm/gmimod/in out/gmi namelist.F.

In the gem/actm/gmimod/Other/test/par/infiles/ directory, sample input namelist files
for different types of runs are available. They are:

• dao2be koch ncar52 10.in: the input file to make runs for beryllium. This uses Koch
table for Be-7 and Be-10.

• dao2be nagai ncar52 10.in: used to make runs for Be-7 and Be-10 using Nagai table.

• dao2co2 dao29 10.in: for CO2 runs

• dao2coldiag ncar52 10.in: for Beryllium runs

• dao2isop dao46 02.in: used to make runs for Isoprene, Acetone, Propene and NO

• dao2n2o dao29 10.in: for N2O runs

• dao2n2o dao44 10.in: for N2O runs

• dao2no dao46 02.in: for NO runs

• dao2rn dao46 06.in: used to make runs for radionuclides Pb and Rn

• dao2sf6 dao29 10.in: for sulfur runs

• gmit4 giss23 06.in: for full chemistry runs

• pfixllnl dao29 04.in: used to make runs with LLNL pressure fixer algorithm

• pfixuci dao29 04.in: used to make runs with GMI pressure fixer algorithm (Prather’s
algorithm)

To run similar cases with GISS met fields and CCM3 met fields one can use the appropriate
naming convention and then modify the input namelist files to reflect the corresponding
cases. For instance

GMI Tutorial 19

Chapter 4. GMI Files

• If you want to make a radionuclide run for Pb and Rn, then the file dao2rn dao46 06.in
to gissrn giss23 06.in and change the number of levels from 46 to 23 (k2 gl = 23),
use GISS met infile names instead of DAO met infile names, etc.

• If you want to run for a year instead of six hours, then change tfinal days to 365.d0.

• If you wish to print out monthly averages, then set do mean=T and pr nc period days

= -1.0d0.

Remark 6 In the input namelist file, the user must provide the exact path for gmi data dir

and for other input files such as met infile names, fixed const infile name, etc.

For restart runs, there is a utility tool available to automatically create input namelist
files. The procedure is described in Section 5.2.

4.2 Input Datasets

4.2.1 netCDF Input Files

Depending on the type of run you want to carry out, several netCDF files may be needed.
The may include

• Met data

• An initial species concentration file

• A photolysis rate (”qj”) file.

• An emission rate file

• Surface area density files.

• A restart file.

Met Fields Met fields from 3 different global models are used for GMI simulations. They are:
DAO, GISS and CCM3. The files (located in the directory MYGMI/gmi gsfc/gmi data/)
that come with the code are

(DAO Met Fields)

DAO_GS_4x5x29_951101.nc

DAO_GS_4x5x46_971023.nc

(GISS Met Fields)

GISS_2prime_4x5x23_770701.nc

(CCM3 Met Fields)

NCAR_CCM2_4x5x44_961115.nc

NCAR_MATCH_4x5x52_970101.nc

Additional data files are available from the anonymous ftp site dirac.gsfc.nasa.gov in
the directories:

pub/gmidata/input_data/met_field/GISS

pub/gmidata/input_data/met_field/DAO

pub/gmidata/input_data/met_field/MACCM3

20 GMI Tutorial

4.2. Input Datasets

4.2.2 ASCII Input Files

A variety of ASCII input files are often used to run the model. We can mention for instance
files containing data on soil type, leaf area index, vegetation type, fertilizer scale, etc. Some
of the ASCII files are grid resolution independent while others are not.

ASCII data files and other miscellanous files are available from the anonymous ftp site
dirac.gsfc.nasa.gov in the directory:

pub/gmidata/input_data/misc

4.2.3 Input Files Needed for ”troposphere” Chemical Mechanism

In this section, we list the files available to run a ”troposphere” test case. They are not all
required at the same time to run the case. The use of each of them depends on the logical
variable selections made in the input namelist file.

1. Meteorological data files. Five different sets can be found on dirac.gsfc.nasa.gov and
they are DAO, GISS, and MACCM3 (used for tropospheric simulations) and FVDAS
and FVGCM (used for stratospheric simulations). To start this type of run, begin
with the GISS fields. There are 24 files for an entire year (2 per month) and the first
file name is GISS 2prime 4x5x23 770101.nc.

2. GISS 2prime 4x5x23.in - this is a file containing a list of meteorological data file
names.

3. GISS gmit3 sad.nc - This NetCDF file contains aerosol surface are densities which
are used in the chemistry rate calculations (on the GISS vertical grid).

4. fertscale 4x5 dao.asc - Fertilizer scale data file needed by the emission calculation
subroutine which was provided by Harvard.

5. fixed acetone gmi giss.nc - This NetCDF file has monthly average values of acetone
(on the GISS vertical grid)

6. gmi giss4x5 030520.nc - This NetCDF file has monthly average emissions (on the
GISS vertical grid).

7. gmit giss jul spin.in - Namelist input deck to run the first 3 months of spinup

8. gmit giss oct spin.in - Namelist input deck to run the second 3 months of spinup

9. gmit giss apr rst.nc - This NetCDF file is a restart file from a previous simulation
which is used to initialize the present simulation.

10. isopconvtable.asc - Isoprene conversion file needed by the emission calculation sub-
routine which was provided by Harvard.

11. jv atms.dat - Data file needed by the FastJ photolysis package.

12. jv spec.dat - Data file needed by the FastJ photolysis package.

GMI Tutorial 21

Chapter 4. GMI Files

13. lai 4x5 dao.asc - Leaf area index data file.

14. lighttable.asc - Light data file needed by the emission calculation subroutine which
was provided by Harvard.

15. monotconvtable.asc - Monoterpene conversion file needed by the emission calculation
subroutine which was provided by Harvard.

16. precip 4x5 dao.asc - Precipitation file needed by the emission calculation subroutine
which was provided by Harvard.

17. ratj.d - Data file needed by the FastJ photolysis package.

18. run gmit4 giss jul spin - short script which, when submitted to the batch system on
halem, will run the initial 3 months of spinup.

19. run gmit4 giss oct spin - short script which, when submitted to the batch system on
halem, will run the second 3 months of spinup.

20. soiltype.asc - Soil type data file needed by the emission calculation subroutine which
was provided by Harvard.

21. uvalbedo.geos.4x5.asc - Uv-albedo data file needed by the FastJ photolysis package.

22. vegtype 4x5 dao.asc - vegetation types.

4.3 Output Files

ASCII output and binary output files in netCDF data format are produced from GMI runs.
The contents and the number of different output files can be controlled by using appropriate
namelist parameters. To obtain information on how these parameters are set, we refer to
Appendix E.

4.3.1 ASCII Diagnostic Output File

The following rules apply to the ASCII diagnostic output file:

• Is named <problem name.asc>.

• Contains up to five sections, each of which can be turned on or off.

• For the first three sections, only information on a single specified species is output.

• Can specify a particular longitude index to use in the second section.

• Can specify the output frequency (in number of time steps).

22 GMI Tutorial

4.3. Output Files

4.3.2 netCDF Output Files

The netCDF output files that can be produced by the GMI model are:

1. <problem name>.const.nc

• species concentration

• [+mass]

• [+ pressure and/or temperature]

• [+dry depos. and/or wet depos.]

2. <problem name>.col.nc

3. <problem name>.flux.nc

4. <problem name>.qj.nc

5. <problem name>.qk.nc

6. <problem name>.qqi.nc

7. <problem name>.qqk.nc

8. <problem name>.sad.nc

Each of the above netCDF output files

• Can be turned on or off.

• Can specify snapshots or mean values for most.

• Can specify frequency of output (number of days, monthly, and/or the 1st and 15th
of each month).

In addition to the previous files, the code can also produce a netCDF restart file named
<problem name>.rst.nc. The file contains everything needed to do restart and can be writ-
ten out with the frequency (namelist variable pr rst period days): number of days, monthly,
and/or the 1st and 15th of each month. There is a namelist variable (do overwrt rst) spec-
ifying whether to over-write or append to the file.

In Appendix C, we provide tables listing the contents of the netCDF output files and
the frequency variables in them can be written out.

GMI Tutorial 23

Chapter 5

Performing Specific Runs

5.1 Specific Runs

As for testing the model, we assume that the model will be run from the directory /scratch/usrid
on daley, /scr/usrid on halem and /mnt/pvfs/usrid on thunderhead. Copy the appropriate
input namelist into the directory.

Suppose that you want to carry out a CO2 run. The namelist file needed for such a run
is dao2co2 dao29 10.in.

%cp $GEMHOME/gem/actm/gmimod/Other/test/par/infiles/dao2co2_dao29_10.in .

Edit the file dao2co2 dao29 10.in and provide the location of the gmi data/ directory (where
the Met Fields reside) by setting

For daley and thunderhead

gmi_data_dir = ’/home/usrid/MYGMI/gmi_gsfc/gmi_data’

For halem

gmi_data_dir = ’/u1/usrid/MYGMI/gmi_gsfc/gmi_data’

The met input file needed for this run is DAO GS 4x5x29 951101.nc that already resides
in the gmi data/ directory.

For output files, the following setting

pr_diag = F,

pr_ascii = T,

pr_ascii3 = F,

pr_netcdf = T

will produce

dao2co2_dao29_10.asc

dao2co2_dao29_10.const.nc

Remark 7 Three namelist variables are important to choose the number of processors.
They are NP actm, NPI actm and NPJ actm, and they satisfy the relation NP actm =
NPI actm×NPJ actm. To execute the code, the number of processors Ncpus is given by
Ncpus = NP actm + 1.

24

5.1. Specific Runs

Here are examples of batch script files (named gmiCO2run.job) for daley, halem and
thunderhead respectively. The run requires 16 processors.

gmiCO2run.job on daley

#!/bin/csh -fx

#PBS -N gmi_CO2run

#PBS -l ncpus=16

#PBS -l walltime=00:05:00

##PBS -l mem=2gb

#PBS -A k3002

#PBS -S /bin/csh

#PBS -V

#PBS -e error.file

#PBS -o output.file

#

cd /scratch/usrid

mpirun -np 16 $GEMHOME/bin/gem -d dao2co2_dao29_10.in

gmiCO2run.job on halem

#!/bin/csh

#BSUB -P a930b

#BSUB -J gmiCO2run

#BSUB -n 16

#BSUB -W 00:20

#BSUB -q general_lng

#BSUB -o /scr/usrid/gmiout.%J

#BSUB -e /scr/usrid/gmierr.%J

#

cd /scr/usrid

prun -n 16 $GEMHOME/bin/gem -d dao2co2_dao29_10.in

exit

gmiCO2run.job on thunderhead

Number of nodes, processes and minutes requested

Nno=8

Npr=16

Nmi=60

ltmbegin -n $Nno -m $Nmi

#

WORK_DIR=/home/usrid/MYGMI/gmi_gsfc/gem

RUN_DIR=/mnt/pvfs/pvfs1/usrid

cd $RUN_DIR

cp $WORK_DIR/bin/gem /home/usrid/rhome/MYGMI/gmi_gsfc/gem/bin

Submit the job

time ltmpi -n $Nno -t $Npr=16 $WORK_DIR/bin/gem -d dao2co2_dao29_10.in

GMI Tutorial 25

Chapter 5. Performing Specific Runs

End the session

ltmend

5.2 Restart Runs

This section contains information on how to use Gem/Gmimod’s restart capability.

To output restart data periodically during a run:

1. In the ACTM RESTART section of the input namelist file, set

pr_restart = T,

pr_rst_period_days = #.#d0,

Replace ”#.#” with whatever you want the period to be.
Note that pr rst period days when converted to seconds, must be a multiple of mdt,
the time increment for reading in new met data.

2. Restart netCDF output will be written to a file named

<problem_name>.rst.nc

Set the namelist variable, do overwrt rst as appropriate (i.e., do you want to keep just
a single set of restart data or multiple sets?).

To create a new namelist input file to use for running from a restart point:

1. Many people choose to create the new namelist input file manually, performing the
same basic steps described in the more automated procedure below.

2. Alternatively, you can execute the mk rstnl (”make restart namelist”) script as follows

$ggmi/Other/scripts/mk_rstnl \

-onl <old_nlfile> -nnl <new_nlfile> \

-rst <rst_ncfile> -tfi <tfinal_days> \

[-npn <problem_name>]

The first four arguments/value pairs are required

old_nlfile : name of the namelist input file that was used to get to

the restart point

new_nlfile : name to call the new namelist input file that will be

used to continue from the restart point

rst_ncfile : name of the netCDF restart file that was written out at

26 GMI Tutorial

5.2. Restart Runs

the restart point

tfinal_days : amount of time to run from the restart point; note that

tbegin_days will be set by the script to what tfinal_days

was when the netCDF restart file was written out

The last argument/value pair is optional

problem_name : new problem name to use in the new namelist input file

For example

$ggmi/Other/scripts/mk_rstnl -onl nlfile.in.old -nnl nlfile.in.new \

-rst ncfile.rst.nc -tfi 10.0d0

This script automatically creates a new namelist file with various namelist variables mod-
ified or added to accomodate the restart. The script uses information from the netCDF
restart file to accomplish this. Values that the script will use are output to the screen; these
should be reviewed to verify that they are what you expected them to be.

The namelist variables that the script will potentially modify or add are:

ESM =>

problem_name : set to value provided by -npn script argument;

otherwise unchanged from value in old_nlfile

tbegin_days : set to tfinal_days at restart point

tfinal_days : set to value provided by -tfi script argument

ACTM_CONTROL =>

start_ymd : set to ending value at restart point

start_hms : set to ending value at restart point

gmi_sec : set to ending value at restart point

ACTM_INPUT =>

met_infile_num : set to ending value at restart point

mrnum_in : set to ending value at restart point - 1

tmet1 : set to tmet2 at restart point

ACTM_OUTPUT =>

pr_qqjk : set to ending value at restart point

ACTM_RESTART =>

rd_restart : set to T

restart_infile_name : set to value provided by -rst script argument

Note that restart dumps can only occur at the end of a met data cycle.
You should edit the new namelist input file directly if you want to change any other

namelist variables not listed above.

GMI Tutorial 27

Chapter 5. Performing Specific Runs

If there is more than one record in the restart file, the default is to use the last one. This
can be changed by setting the namelist variable, restart inrec, to a different record number.

To resume running from the restart point:

1. Start the run just as you normally would, but this time use the new restart namelist
input file you created above.

28 GMI Tutorial

Chapter 6

Making Changes to the Code

This chapter briefly describes coding considerations, recompiling and linking the code, and
adding chemichal mechanisms.

6.1 Coding Consideration

Some coding conventions are required before any change is made:

• All real variables must be declared ”real*8”.

• All real numbers must have a ”d” exponent even if ”d0”.

• Must use ”# include” for all include statements.

• Use only generic intrinsic function calls (for instance use MOD instead of AMOD).

• Do not use the real or float intrinsic functions, just assign integer variable to a real*8
variable if need be and then proceed.

• Do not use machine specific calls.

• Use of appropriate F90 language features is encouraged (dynamic allocation, array
syntax, etc.).

• Use the physical constants and conversion factors defined in
actm/gmimod/include/gmi phys constants.h.

• Use the time constants and conversion factors defined in
actm/gmimod/include/gmi phys constants.h.

6.2 Adding Chemical Mechanisms

Currently, he GMI code has four chemical mechanisms:

1. aerosol

29

Chapter 6. Making Changes

2. stratosphere

3. strat trop (combined stratosphere/troposphere)

4. troposphere

The code portion for each mechanism is contained in its own subdirectory (located at
actm/gmimod/chem/) having the name of the corresponding mechanism. It is organized
into two subdirectories (see Chapter 2): include setkin/ and setkin/.

If you want to add another chemical mechanism, just create a new subdirectory from
actm/gmimod/chem/ and move the setkin files there. To compile the code, follow the
procedures described in Section 6.4.

The selection of a particular chemical mechanism is done through the environment
variable CHEMCASE in the file cshrc.ggmi (see Chapter 3).

6.3 The Make System

Makefile.cpp : a template for Makefile.

mkmf : a command line that uses Makefile.cpp and the system files to produce the Make-
file.

make : to compile the code (use regular make, not GNU make).

make link : for linking.

make clean : to remove all the object files created at compilation.

6.4 Making Changes

After modifying any source file, do one of the following:

1. If you want to be absolutely certain that everything gets taken care of, type:

%cd $gem

%mkmf

%make

2. For changes to ”.F” files, in the directory or directories where you made the changes,
type:

%mkmf

%make

3. For changes to ”.h” files, go to the highest level directory that contains any ”.F” files
that depend on the modified ”.h” file, then type:

30 GMI Tutorial

6.4. Making Changes

%mkmf

%make

Note that it is often easy to miss re-compiling something using this method. If you
are uncertain exactly what directory to start from, use one of the other two options.

To re-link the code, we assume that the user’s has made changes in a portion of the code
and compiled that portion in the sub-directory where it resides. The re-linking is then done
at the top directory by typing:

%cd gem

%mkmf

%make link

Sometimes it is a good idea to start with a fresh slate after repeated re-compilations or a
large number of changes. To re-compile and re-link all of the files in the Gem/Gmimod
directory tree, type:

%cd gem

%make clean

%mkmf

%make

Remark 8 It is important to note that if you make changes specific to a particular chem-
ical mechanism (i.e., outside setkin files), use the variable “chem mecha” to delimit your
changes. You need to include “gmi chemcase.h” at the appropriate place. As example, con-
sider the routine Remove Trop Water (in gmi step subs.F) that was modified to accomodate
calculations specific for the strat trop mechanism. The new code looks like

subroutine Remove_Trop_Water

& (ih2o_num, const, pchem_water, strat_water)

implicit none

include "gmi_dims.h"

include "gmi_chemcase.h"

integer :: ih2o_num

real*8 :: const(i1:i2, ju1:j2, k1:k2, num_species)

real*8 :: pchem_water(i1:i2, ju1:j2, k1:k2)

real*8 :: strat_water(i1:i2, ju1:j2, k1:k2)

if (chem_mecha == ’strat_trop’) then

const(:,:,:,ih2o_num) = strat_water(:,:,:)

else

const(:,:,:,ih2o_num) =

GMI Tutorial 31

Chapter 6. Making Changes

& strat_water(:,:,:) *

& (1.0d0 +

& ((const(:,:,:,ih2o_num) - pchem_water(:,:,:)) /

& pchem_water(:,:,:)))

endif

return

end

6.5 Debugging the Code

If you want to run the code in a debug mode,

• Edit the file include/gem option.h and set the parameter Debug Option to 1 and the
other two options (optimization and profiling) to 0.

• Go to the main directory

• Type: mkmf

• Type: make

• Submit the executable using a debugger such as TotalView

Remark 9 It is also possible to run only part of the code in a debug mode. You need to
set Debug Option (as above) and move to your desired directory where you need to execute
the commands mkmf and make. Then move to the main directory and type make link.

32 GMI Tutorial

Chapter 7

Script Tools

The GMI code comes with several scripts that allow users to perform commands such as
searching from words within the code, counting the number of lines in the source code,
constructing a restart input namelist file, etc. All the scripts are located in the directory
gem/actm/gmimod/Other/scripts and can be executed from anywhere in the code. They
are:

check ver searches for all file names in the current directory containing ”search string”
and replaces the first instance of ”search string” with ”replace string”.
Usage: chname search string replace string

clgem deletes a number of the files created when gem is run.

doflint runs the flint Fortran source code analyzer on the gem code.
It can be run on any machine where flint is available (e.g., tckk), and where the gem
code has been installed and compiled.
Usage: doflint

gmi fcheck can be used to run the Flint source code analyzer on Gem/Gmimod.

gmi fcheckrm can be used after ”gmi fcheck” is run on the Gem/Gmimod code to strip
out Flint messages that are of no consequence. Gmi fcheckrm uses gmi fcheck.out as
its input file, and produces a new file called gmi fcheckrm.out.

grabf grabs all of the Gem ”.f” files and puts them in $gem/CODE. These files then can
be ftped to a machine with access to the FORTRAN Lint (flint) source code analyzer
tool.

lastmod lists all Gem/Gmimod files in reverse order of when they were last modified. It is
useful for determining which routines a user has modified since they were last installed
in the code.
Usage: lastmod [tail num]

lastmod all lists all Gem/Gmimod files in reverse order of when they were last modified.
It is useful for determining which routines a user has modified since they were last
installed in the code.
Usage: lastmod all [tail num]

33

Chapter 7. Script Tools

line count gem does a variety of line counts on the Gem/Gmimod source code.

line count gmi does a variety of line counts on the Gmimod source code.

list species lists all the species labels for the selected chemical mechanism (environment
variable CHEMCASE).
Usage: list species

lnsdat (lns (symbolic link) data) symbolically links the Gmimod input file directory to
”gmi data” in the current directory. The Gmimod namelist file can then point to a
generic gmi data directory.

mk rstnl (make restart namelist) constructs a restart input namelist file (see Section 5.2
for its use).

savit creates a clean copy of a Gem/Gmimod code tree (considered only files with extension
[.F—.c—.h]) in a tmp directory, tars it up into a tarfile named ggmisav.tar, and puts
this file in the directory where your gem directory resides. The tmp files are then
deleted.

savset creates a clean copy of the Gem/Gmimod setkin files (considered only files with
extension [.F—.c—.h]) in a tmp directory, tars it up into a tarfile named setsav.tar,
and puts this file in the directory where your gem directory resides. The tmp files are
then deleted.

seabf searches through the Gem/Gmimod ”.F” source files for a particular string (case
insensitive). Output comes to the screen unless an optional second file name argument
is provided.
Usage: seabf search string [file name]

seabf word searches through the Gem/Gmimod ”.F” source files for a particular word
(case insensitive). Output comes to the screen unless an optional second file name
argument is provided.
Usage: seabf word search string [file name]

seac searches through the Gem/Gmimod .c source files for a particular string (case insen-
sitive). Output comes to the screen unless an optional second file name argument is
provided.
Usage: seac search string [file name]

seah searches through the Gem/Gmimod ”.h” include files for a particular string (case
insensitive). Output comes to the screen unless an optional second file name argument
is provided.
Usage: seah search string [file name]

seah word searches through the Gem/Gmimod ”.h” include files for a particular word
(case insensitive). Output comes to the screen unless an optional second file name
argument is provided.
Usage: seah word search string [file name]

34 GMI Tutorial

sealf searches through the Gem/Gmimod ”.f” source files for a particular string (case
insensitive). Output comes to the screen unless an optional second file name argument
is provided.
Usage: sealf search string [file name]

seamf searches through the Gem/Gmimod ”Makefile.cpp” source files for a particular
string (case insensitive). Output comes to the screen unless an optional second
file name argument is provided.
Usage: seamf search string [file name]

GMI Tutorial 35

Chapter 8

How to Use CVS?

8.1 What is CVS?

CVS is an acronym for the ”Concurrent Versions System”. It is a ”Source Control” or
”Revision Control” tool having the following features:

• Non-proprietory and can be downloaded from the internet;

• Allows users to work simultaneously on the same file, keep track of changes by revision,
tag and date;

• Can obtain an ealier version of the software easily;

• Allows the user to track the supplier’s software releases while making code changes
locally.

• Enables the user to merge code changes between his version and supplier’s automati-
cally and identify problems if merge presents contradictions;

• A user of CVS needs only to know a few basic commands to use the tool.

Here are some important terms used with CVS:

Repository: The directory storing the master copies of the files. The main or master
repository is a tree of directories.

Module: A specific directory (or mini-tree of directories) in the main repository. Modules
are defined in the CVS modules file.

RCS: Revision Control System. A lower-level set of utilities on which CVS is layered.

Check out: To make a copy of a file from its repository that can be worked on or examined.

Revision: A numerical or alpha-numerical tag identifying the version of a file.

36

8.2. How to Use CVS?

8.2 How to Use CVS?

There are two ways you can use CVS:

1. Use CVS to keep up to date with the GMI code changes. This will require a source-
motel account.

2. Use CVS to track both GMI code releases and your own changes. Again you can do
this either on sourcemotel or on your local machine (with your own CVS installation).

8.3 Use CVS to Keep Up to Date with GMI Source Code

Changes

CVS is used to keep track of collections of files in a shared directory called ”The Repository”.
Each collection of files can be given a ”module” name, which is used to ”checkout” that
collection. After checkout, files can be modified (using your favorite editor), ”committed”
back into the Repository and compared against earlier revisions. Collections of files can be
”tagged” with a symbolic name for later retrieval. You can add new files, remove files you
no longer want, ask for information about sets of files in three different ways, produce patch
”diffs” from a base revision and merge the committed changes of other developers into your
working files. In this section, we explain how these operations are done with the GMI code.
It is assumed that the user has an account on sourcemotel and that CVS is installed on his
local computer.

We assume that you have already obtained a copy of the code (say the most recent
release) from sourcemotel by using the command:

%cvs -d usrid@sourcemotel.gsfc.nasa.gov:/cvsroot/gmi co gmi_gsfc

A directory labeled gmi gsfc (containing the code) will be created at the location where the
command was executed.

Assume that you want to know all the different available releases (with the associated
tags) of the GMI code. From the gmi gsfc directory, type

%cvs status -v cshrc.ggmi

to obtain the status of the file cshrc.ggmi. The results give

File: cshrc.ggmi Status: Up-to-date

Working revision: 1.2

Repository revision: 1.2 /cvsroot/gmi/gmi_gsfc/cshrc.ggmi,v

Sticky Tag: (none)

Sticky Date: (none)

Sticky Options: (none)

Existing Tags:

COMBINED_STRAT-TROP_ADDED (revision: 1.2)

GMI Tutorial 37

Chapter 8. How to Use CVS?

READY_FOR_BOTH_SEQUENTIAL_PARALLEL (revision: 1.2)

GMI_GSFC_BASELINE (revision: 1.1.1.1)

GMI_GSFC_STANDARD (revision: 1.1.1.1)

GMI_GSFC (revision: 1.1.1.1)

GSFC_STANDARD (revision: 1.1.1.1)

LLNL_ALLCASE_HARVARDMOD_3 (revision: 1.1.1.1)

LLNL_TROPO_OLDWETDEPOS_3 (revision: 1.1.1.1)

LLNL_AEROTROPO_MODIFIED_2 (revision: 1.1.1.1)

llnl_initial_3CHEMCASEs (revision: 1.1.1.1)

start (revision: 1.1.1.1)

llnl (branch: 1.1.1)

One can observe that the code has three releases (1.1.1, 1.1.1.1 and 1.2) and twelve associ-
ated tags.

%cvs export [-D today][-r tag] gmi_gsfc

gives exported version of the gmi gsfc directory. The expressions in [] are options. ‘-D
today’ gives the latest version of the code. The user can also specify ”-D ’June 12, 2004’”
(note that the date is in single quote) for version of that day, or use ’-r release-1-1-1-1’ for
release 1.1.1.1 (release-1-1-1-1 is a CVS tag), or ’-r LLNL ALLCASE HARVARDMOD 3’
for the gem directory with tag LLNL ALLCASE HARVARDMOD 3.

%cvs checkout gmi_gsfc

provides in addition to exported version, CVS information. With such information, users
will be able to keep up-to-date with our release automatically with simple cvs update

command (instead of having to manually insert the changes we broadcast). Once you check
out a version of the code, you form a ’working directory’.

%cvs update gmi_gsfc

only works if a user has cvs-checked-out version. This brings the changes made in the
master repository to the user’s working directory. An example of the print out from this
command:

Example 1 You want to checkout a copy of the GMI code from sourcemotel. Then type

%cvs checkout gmi_gsfc

It creates a copy of the code in your own directory. Assume you have made some changes
in the code and the next code release arrives. You can simply do a cvs update to bring the
new changes in the new release into your copy:

%cd gmi_gsfc

%cvs update

A list is printed on your screen to let you know which files were updated (a ’U’ in front of
the file) from the new release, and which files were modified (a ’M’ in front of the file) and
any conflict that may result from this update.

38 GMI Tutorial

8.3. Use CVS to Keep Up to Date with GMI Source Code Changes

Remark 10 Note that doing cvs update under the gmi gsfc directory will automatically
update the entire code. You can update individual directory or file by going into the directory
and do cvs update- which updates that directory and any sub-directories, or cvs update
filename- which updates only that file.

%cvs diff filename

This does the differencing between the file in your working repository with the one you
checkout from the sourcemotel repository.

Example 2 Assume that you want to compare the file gmi step.F from your working
repository with the one on sourcemotel in the release with TAG COMBINED STRAT-
TROP ADDED:

%cd gem/actm/gmimod/step

%diff -r COMBINED_STRAT-TROP_ADDED gmi_step_stub.F

Index: gmi_step_subs.F

===

RCS file: /cvsroot/gmi/gmi_gsfc/gem/actm/gmimod/step/gmi_step_subs.F,v

retrieving revision 1.1.1.1

diff -r1.1.1.1 gmi_step_subs.F

200a201,202

> CHARACTER*15 E_NAME

> EXTERNAL GETENV

210a213

> CALL GETENV(’CHEMCASE’,E_NAME)

212c215,220

< strat_water(:,:,:) = const(:,:,:,ih2o_num)

> IF (E_NAME == ’strat_trop’) THEN

> strat_water(:,:,:) = MIN_STRAT_WATER

> const(:,:,:,ih2o_num) = strat_water(:,:,:)

> ELSE

> strat_water(:,:,:) = const(:,:,:,ih2o_num)

> ENDIF

229d236

<

275a283,284

> CHARACTER*15 E_NAME

> EXTERNAL GETENV

284a294,304

> CALL GETENV(’CHEMCASE’,E_NAME)

>

> IF (E_NAME == ’strat_trop’) THEN

> const(:,:,:,ih2o_num) = strat_water(:,:,:)

GMI Tutorial 39

Chapter 8. How to Use CVS?

> ELSE

> const(:,:,:,ih2o_num) =

> & strat_water(:,:,:) *

> & (1.0d0 +

> & ((const(:,:,:,ih2o_num) - pchem_water(:,:,:)) /

> & pchem_water(:,:,:)))

> ENDIF

286,290d305

< const(:,:,:,ih2o_num) =

< & strat_water(:,:,:) *

< & (1.0d0 +

< & ((const(:,:,:,ih2o_num) - pchem_water(:,:,:)) /

< & pchem_water(:,:,:)))

%cvs log filename

This lists the log messages and status of the master repository.

Example 3 Assume that you want to check the log messages and status of the file cshrc.ggmi.

%cvs log cshrc.ggmi

RCS file: /cvsroot/gmi/gmi_gsfc/cshrc.ggmi,v

Working file: cshrc.ggmi

head: 1.2

branch:

locks: strict

access list:

symbolic names:

COMBINED_STRAT-TROP_ADDED: 1.2

READY_FOR_BOTH_SEQUENTIAL_PARALLEL: 1.2

GMI_GSFC_BASELINE: 1.1.1.1

GMI_GSFC_STANDARD: 1.1.1.1

GMI_GSFC: 1.1.1.1

GSFC_STANDARD: 1.1.1.1

LLNL_ALLCASE_HARVARDMOD_3: 1.1.1.1

LLNL_TROPO_OLDWETDEPOS_3: 1.1.1.1

LLNL_AEROTROPO_MODIFIED_2: 1.1.1.1

llnl_initial_3CHEMCASEs: 1.1.1.1

start: 1.1.1.1

llnl: 1.1.1

keyword substitution: kv

total revisions: 3; selected revisions: 3

description:

revision 1.2

40 GMI Tutorial

8.4. Use CVS to Track Both New Releases and Your Changes

date: 2004/07/01 19:47:52; author: kouatch; state: Exp; lines: +12 -3

Modifications were made so that the code can be compiled and run on

a single processor or in parallel.

The user just needs to set the pre-processing option

MSG_OPTION (gem/include/gmi_sys_options.h) to MSG_NONE for single

processor case or to MSG_MPI for the parallel run.

In addition, a new pre-processing option MPI_2_OPTION was

introduced to add/remove MPI-2 calls in the code. Setting MPI_2_OPTION to

NO_MPI_2 will disable MPI-2 calls while setting it to WITH_MPI_2

will enable MPI-2 calls.

revision 1.1

date: 2003/11/10 21:39:18; author: clune; state: Exp;

branches: 1.1.1;

Initial revision

revision 1.1.1.1

date: 2003/11/10 21:39:18; author: clune; state: Exp; lines: +0 -0

imported from coremodel 030602 from LLNL

===

8.4 Use CVS to Track Both New Releases and Your Changes

If you want to maintain your own code and keep track of the changes from sourcemotel,
what you should do is create your own repository and use the ‘vendor branch’ concept in
CVS. If you do it from your local machine, set

setenv CVSROOT some-home-directory-on-your-local-machine

(e.g. setenv CVSROOT /home/userid/gmi repository)

in your .cshrc file.

To initialize the repository, type

%cd /home/userid/gmi_repository

%cvs init

Now you can checkout any release of the GMI code. Assume that you want to obtain
the release READY FOR BOTH SEQUENTIAL PARALLEL

%cvs -d usrid@sourcemotel.gsfc.nasa.gov:/cvsroot/gmi co -r \

READY_FOR_BOTH_SEQUENTIAL_PARALLEL gmi_gsfc

If you only want the gem/ directory, type

%cvs -d usrid@sourcemotel.gsfc.nasa.gov:/cvsroot/gmi co -d gem -r \

READY_FOR_BOTH_SEQUENTIAL_PARALLEL gmi_gsfc/gem

GMI Tutorial 41

Chapter 8. How to Use CVS?

You can now work with the code. If you make some changes and want to bring them to your
repository for keep, do the following from the directory gmi repository/gmi gsfc/gem/:

%cvs diff > output.diff

%cvs update

%cvs commit -m ’message for the commit’

If you want to create a new file that does not exist in the repository and you want to add
it in the repository, type (from the directory where the new file resides)

%cvs add new_file

Example 4 Assume that you want to add a new chemical mechanism, new chem. In the
directory actm/gmimod/chem, you have created the directory new chem/ that contains the
subdirectories include setkin/ and setkin/. To add the directory structure of the new chem-
ical mechanism into the repository, do the following:

%cd actm/gmimod/chem

%cvs add new_chem/

%cvs commit new_chem/

%cd new_chem

%cvs add include_setkin/

%cvs commit include_setkin/

%cd include_setkin

%cvs add *

%cd ../

%cvs add setkin/

%cvs commit setkin/

%cd setkin

%cvs add *

8.5 Where To Obtain CVS?

https://ccvs.cvshome.org/servlets/ProjectDocumentList

42 GMI Tutorial

Chapter 9

Parallel Performance

One of the objectives of the Earth Space Data Computing Division (ESDCD) as part of
the Earth Sciences Enterprise at NASA Goddard Space Flight Center (GSFC), is to make
the computational capabilities of and parallel computers available to scientists involved
in Earth Sciences research. ESDCD supports initiatives to report benchmark results of
various atmospheric forecast models in order to indicate how well its NASA Center for
Computational Science (NCCS) computers perform in comparison with other machines. In
addition, ESDCD aims to provide these results to the scientific community and to create
a user-friendly environment so that users of NCCS systems can easily access, run, and
examine performance of climate and weather simulation codes. To this end, we propose to
benchmark the Global Modeling Initiative (GMI) code.

In this report we present the parallel performance of the GMI code on the SGI Origin
3800, the Compaq SC45, and a linux cluster. Using test problems of different sizes, we
analyze how efficient the code is on these computers.

9.1 Description of the Platforms

The NASA Center for Computational Sciences (NCCS) is the high-performance scientific
computing facility operated, maintained, and managed by ESDCD. The NCCS mission is to
provide computing resources and support services to enable space and Earth scientists who
are currently funded by NASA Headquarters to accomplish their research goals. Among the
computers available at NCCS, we can mention the SGI Origin 3800 (daley), the Compaq
SC45 (halem), and a linux cluster (thunderhead). The characteristics of each of the platforms
are shown in Table 9.1.

9.2 Parallel Performance

9.2.1 Description of the Test Cases

For our experiments, we use three test cases that differ with the chemical mechanism em-
ployed. They are summarized in Table 9.2.

43

Chapter 9. Parallel Performance

halem daley thunderhead

Processor Dec Alpha MIPS R12000 Pentium 4 Xeons
Proc/Node 4 4 2
Proc Speed 1.25Ghz 0.4Ghz 2.4Ghz

Memory/Node 2Gb 2Gb 1Gb
Cache/Proc 8Mb
disk/Node 38Gb 80Gb

OS OSF1 5.1 Irix 6.5 RedHat Linux 7.3
Interconnect Myrinet 2000

Module/Compiler fortran/551I MIPSpro 7.2.1.2m Fortran Intel 7.0

Table 9.1: Features of the different platforms.

STRATOSPHERE AEROSOL TROPOSPHERE

Number of grid points 72 × 46 × 28 72 × 46 × 46 72 × 46 × 46
Model time step 3600s 3600s 3600s

Number of species 57 30 86
Beginning date Jan. 1, 2000 Jan. 1, 1999 Jan. 1, 2002

Simulation length (days) 10 31 7
Chemistry option SmvgearII Sulfur SmvgearII

Table 9.2: Information on the test cases.

9.2.2 Model Performance

For each of the test cases described in the previous section, we provide the wall clock time
as function of the number of processes and processors. The results are presented in Table
9.3, Table 9.4, and Table 9.5

In each table, the first column lists the number of processors requested and the second
column lists the number of processes (the decomposition gives the number of processes in
the longitude and latitude directions and the master process) used. For some of the runs
on thunderhead, we employed one process per node (each node has 2 CPUs). This gave us
access to more computing resource.

In all the test cases, we note that in general, the computing time decreases as the number
of processor increases. halem displays the smallest wall clock time.

9.3 Profiling the Code

Profiling a code can be defined as the used of software tools to measure a program’s run-time
characteristics and resource utilization. It is important to identify where the bottlenecks are
and why these areas might be causing problems. By utilizing profiling tools and techniques,
we want to to learn which areas of the code offer the greatest potential performance increase.
We want to target the most time consuming and frequently executed portions of the program

44 GMI Tutorial

9.3. Profiling the Code

STRATOSPHERIC TEST CASE

CPUs requested Processes used halem daley thunderhead

16 5 × 3 + 1 1226 3725 2786
3 × 5 + 1 1144 3719 2833

32 5 × 3 + 1 2051
3 × 5 + 1 2011
6 × 5 + 1 747 2024 1612
5 × 6 + 1 802 2093 1627

62 6 × 5 + 1 1158
5 × 6 + 1 1198

64 9 × 7 + 1 527 1192 1011
7 × 9 + 1 504 1139 962

128 9 × 7 + 1 741
7 × 9 + 1 731

14 × 9 + 1 413 782 712

254 14 × 9 + 1 538

Table 9.3: 10-day simulation (46 × 72× 28): wall clock time (in seconds) as function of the
number of processors.

AEROSOL TEST CASE

CPUs requested Processes used halem daley thunderhead

16 5 × 3 + 1 1170 2552 2091
3 × 5 + 1 1084 2514 2045

32 5 × 3 + 1 1560
3 × 5 + 1 1461
6 × 5 + 1 926 1610 1401
5 × 6 + 1 970 1655 1466

62 6 × 5 + 1 1027
5 × 6 + 1 1077

64 9 × 7 + 1 826 1218 1295
7 × 9 + 1 806 1181 1246

128 9 × 7 + 1 948
7 × 9 + 1 896

14 × 9 + 1 790 1066 1332

254 14 × 9 + 1 967

Table 9.4: 31-day simulation (46 × 72× 46): wall clock time (in seconds) as function of the
number of processors.

for optimization with the objective of reducing the overall wall clock execution time.

In this section, we give a quick profile of the code obtained by carrying out a 6-day

GMI Tutorial 45

Chapter 9. Parallel Performance

TROPOSPHERIC TEST CASE

CPUs requested Processes used halem daley thunderhead

16 5 × 3 + 1 1665 4304 3274
3 × 5 + 1 1501 4096 3068

32 5 × 3 + 1 2283
3 × 5 + 1 2331
6 × 5 + 1 975 2294 1893
5 × 6 + 1 1196 2402 1818

62 6 × 5 + 1 1377
5 × 6 + 1 1551

64 9 × 7 + 1 822 1383 1355
7 × 9 + 1 938 1292 1254

128 9 × 7 + 1 1050
7 × 9 + 1 943

14 × 9 + 1 601 1088

254 14 × 9 + 1 830

Table 9.5: 7-day simulation (46 × 72 × 46): wall clock time (in seconds) as function of the
number of processors.

simulation of the combined strat/trop chemical mechanism. The computations were done
on halem using one processor. The profiling tool used was PIXIE (Instruction-counting
profiler for optimization and coverage- analysis).

We count the number of instructions, cycles, flops, loads and loads followed by a load.
The results appear in Table 9.6. We observe that (1) the code executes more than one
instruction per cycle, (2) 27% of instructions are floating point operations and 28.6% of
them are for memory access.

Number performed Ratio

Cycles 14577956172319 0.915
Instructions 15926111272717 1.000
Flops 4296235981869 0.270
Loads 4558051358935 0.286
Load followed by load 2064339526026 0.130

Table 9.6: Number of cycles and computer operations.

Table 9.7 reports the profiling of the code by providing for each routine the number of
cycles used, the number of instructions, and the number of times it is called.

46 GMI Tutorial

9.3. Profiling the Code

cycles %cycles cum% instructions c/i calls c/call name

2106782961361 14.5 14.5 1890532428486 1.1 112135 18787916 decomp
2085230800969 14.3 28.8 2003809294042 1.0 26316 79238137 smvgear
1793047403937 12.3 41.1 1425798316323 1.3 112135 15990078 pderiv
1617179002710 11.1 52.1 1578159817171 1.0 393157 4113316 backsub
1385973782189 9.5 61.7 2087114432498 0.7 419473 3304083 subfun
1158256718609 7.9 69.6 711311082188 1.6 13248 87428798 conv tran
874604074507 6.0 75.6 1152066322724 0.8 144 6073639406 update wetdep
727473931580 5.0 80.6 768224797719 0.9 18837 38619416 fzppm
213659684666 1.5 82.1 561220762529 0.4 144 1483747810 lookup qj
183904862421 1.3 83.3 211607494209 0.9 23766912 7738 calc wet loss rate
174011101173 1.2 84.5 315338980788 0.6 18837 9237729 fyppm
168316421742 1.2 85.7 138527529965 1.2 37982880 4431 lmtppm
157083154722 1.1 86.7 201103904430 0.8 18837 8339075 calc advec cross terms
155913150013 1.1 87.8 466932212882 0.3 2880 54136510 save diag llnl1
149069595190 1.0 88.8 263828405875 0.6 33688044 4425 fxppm
132060167424 0.9 89.7 148331834640 0.9 144 917084496 do vert diffu
124404183351 0.9 90.6 135120220190 0.9 18837 6604246 do tpcore dao2
107139490560 0.7 91.3 91457620992 1.2 119708928 895 kcalc .SKARR
106411371311 0.7 92.1 142186079913 0.7 144 738967856 do convec ncar
102225460428 0.7 92.8 134601252786 0.8 18837 5426844 yadv dao2
86274439524 0.6 93.4 89565150402 1.0 18837 4580052 ytp
70097694849 0.5 93.8 96981861249 0.7 18837 3721277 xmist
65388652056 0.4 94.3 119830953879 0.5 18837 3471288 ymist
64036138023 0.4 94.7 93981912453 0.7 18837 3399487 xadv dao2
62359030539 0.4 95.1 110808299628 0.6 18837 3310454 xtp
58010206457 0.4 95.5 129754132126 0.4 144 402848656 update advec
56564025393 0.4 95.9 68765066730 0.8 18837 3002815 qckxyz
55948997828 0.4 96.3 59611502319 0.9 144 388534707 update smv2chem
54474873836 0.4 96.7 97202628604 0.6 26316 2070029 calcrate
51092538590 0.4 97.0 104830067913 0.5 144 354809296 gmi step
40506220080 0.3 97.3 71836767648 0.6 144 281293195 update qk
29719020528 0.2 97.5 27905746264 1.1 953856 31157 kcalc .SKSTS HOCL HCL
28062443520 0.2 97.7 22315461120 1.3 4769280 5884 kcalc .FYRNO3
25958714112 0.2 97.9 47602660608 0.5 476928 54429 kcalc
20941907796 0.1 98.0 17827437900 1.2 953856 21955 kcalc .SKSTS CLONO2 HCL
20180496816 0.1 98.2 16620294150 1.2 953856 21157 kcalc .SKSTS HOBR HCL
19722880512 0.1 98.3 22180013568 0.9 21938688 899 kcalc .SKLP
19092381480 0.1 98.4 16665641364 1.1 953856 20016 kcalc .SKSTS CLONO2
15237849600 0.1 98.5 7268382720 2.1 14307840 1065 kcalc .SKFO
14776279534 0.1 98.7 35181139658 0.4 576 25653263 solve block

Table 9.7: One-day simulation of the combined strat/trop chemical mechanism: breakup
of the resources consumed by the major routines.

The GMI code uses a namelist variable, do ftiming, if set to .true., allows the profiling of
the code, in particular how much time is spent on each operator. We did a 31-day simulation
of the tropospheric chemical mechanism with initial conditions taken from January 1, 2002
at hour 00. The experiment were carried out on halem with 30 processors (the I/O processor
not included).

Block Min Time Max Time Avg Time

whole actm 4782.5593 4782.5596 4782.5594
gmi step 4544.8621 4559.7873 4552.7762
mgroupsync beg 1.2370 16.1455 9.1320
gmi step first 0.0007 0.0104 0.0058
gmi step misc 16.7744 19.9291 17.8405
emiss 5.0691 6.1272 5.6206
diffu 21.4622 25.3274 22.3803
mgroupsync advec 1.4002 6.2127 4.6978
advec 2386.5001 2390.1191 2388.4267
convec 90.8310 102.3972 94.2011
drydep 4.3659 7.7016 5.3814

GMI Tutorial 47

Chapter 9. Parallel Performance

wetdep 114.9082 131.7440 123.2534
addwat 2.2521 2.8839 2.5315
chem 531.3664 1403.0029 1104.1971
remwat 2.2020 2.6483 2.3287
synspc 2.5696 3.0228 2.7519
mgroupsync ret 469.5580 1356.7404 769.9750

Table 9.8: 31-day simulation of tropospheric chemical mech-
anism: timing breakup of the different operators.

The results of Table 9.8 show that more than 50% of the time was spent on the advection
operator. The chemistry operator took about 23% of the time. The fact that there is a
ratio of about 2.6 between the maximum time and the minimum time spent by processes
on the chemistry operator, shows that this operator has some load inbalance.

48 GMI Tutorial

Bibliography

[1] D.B. Considine, P.S. Connell, D.J. Bergmann, D.A. Rotman, and S.E. Strahan. Sen-
sitivity of global modeling initiative ctm predictions of anatatic ozone recovery to gcm
and das generated meteorological fields. preprint.

[2] D.B. Considine, A.R. Douglass, P.S. Connell, D.E. Kinnison, and D.A. Rotman. A polar
stratospheric cloud parameterization for the global modeling initiative three dimensional
model and its response to stratospheric aircraft. J. Geo. Res., 105(D3):3955–3973, 2000.

[3] A.R. Douglass, M.J. Prather, T.M. Hall, S.E. Strahan, P.J. Rasch, L.C. Sparling, L. Coy,
and J.M. Rodriguez. Choosing meteorological input for the Global Modeling Initiative
assessment of high-speed aircraft. J. Geo. Res., 104(D22):27545–27564, 1999.

[4] D.E. Kinnison, P.S. Connell, J.M. Rodriguez, D.A. Rotman, D.B. Considine, J. Tan-
nahill, R. Ramaroson, P.J. Rasch, A.R. Douglass, S.L. Baughcum, L. Coy, D.W. Waugh,
S.R. Kawa, and M.J. Prather. The Global Modeling Initiative assessment model: ap-
plication to high speed civil transport perturbation. J. Geo. Res., 106(D2):1693–1711,
2001.

[5] D.A. Rotman, J.R. Tannahill, D.E. Kinnison, P.S. Connell, D. Bergmann, D. Proctor,
J.M. Rodriguez, S.J. Lin, R.B. Rood, M.J. Prather, P.J. Rasch, D.B. Considine, R. Ra-
maroson, and S.R. Kawa. The Global Modeling Initiative assessment model: model
description, integration, and testing of the transport. J. Geo. Res., 106(D2):1669–1691,
2001.

49

Appendix A

Include Files

The files presented here are located in include/ directory. They are required for the prepro-
cessing and compilation of the code. Any modification of these files leads to the execution
of the commands mkmf for the creation of the Makefile file and make in order to obtain a
new executacble.

gem config.h
Sets configuration parameters for gem Makefiles. The following information must be pro-
vided:

• Location of the netCDF include files (variable INCLUDES NETCDF) and library
(NETCDFLibs)

• Location of the MPI include files (variable INCLUDES MSG) and library (MSGLIB-
DIR)

• Commands to call the C (variable CC) and Fortran (FC) compilers.

• Compilations options.

gem options.h
To select the package, the chemical solver, and the desire compilation mode (debugging,
optimization, profiling).

gem sys options.h
To select the architecture and the message passing options. The user must set the variables:

• ARCH OPTION: to determine the platform used.

• MSG OPTION: for the message passing option. Choose MSG NONE if you want the
single processor version of the code, or MSG MPI if you prefer the multiple processor
one with MPI as message passing.

• MPI 2 OPTION: to determine if you want to include or not MPI-2 calls. Consider
NO MPI 2 if the platform you will be running the code on does not support MPI-2,
otherwise choose WITH MPI 2.

50

gem msg numbers.h
Contains the message numbers used to identify specific messages in the message passing
calls. Should not be edited.

gem rules.h
Contains suffix dependencies and compilation rules for all Makefile.cpp files in directories
that contain source files. Should not be edited.

GMI Tutorial 51

Appendix B

Single/Multiple Processor Runs

We describe how to carry out single (MPI is not used) or multiple processor runs. Before
you compile the code, you need to edit the file include/gem sys options.h and set

#define MSG_OPTION MSG_NONE

if you want to produce the executable for a single processor run, or

#define MSG_OPTION MSG_MPI

for the multiple processor run.
After you obtained the executable, you need to edit your input namelist file.

Namelist Variables for Single CPU

NP_actm = 1

NPI_actm = 1

NPJ_actm = 1

Namelist Variables for Multiple CPUs

NP_actm = 15

oneprcsr = 0

NPI_actm = 5

NPJ_actm = 3

The following relationships should hold in order to run the code:

NP actm = NPI actm × NPJ actm
i2 gl−i1 gl+1

NPI actm
≥ gmi nborder

j2 gl−ju1 gl+1

NPJ actm
≥ gmi nborder

and the number of processors to be requested to submit the executable is equal to NP actm+
1.

Here i2 gl, i1 gl, j2 gl, ju1 gl, and gmi nborder are namelist variables (see Appendix
E).

52

Appendix C

GMI NetCDF Files

C.1 Contents of netCDF Files

Table C.1 gives a summary of the information contained in the netCDF files introduced in
Section 4.3.2.

C.2 Output Frequency of NetCDF Files

For each of the files in Section 4.3.2, we provide in Table C.2 the frequency in which data
can be written in the file.

53

Chapter C. NetCDF Files

File Suffix Variables Mean Snapshot Buffered Writer

Col .col.nc psfa X Slaves
consta X

Const .const.nc const X X X Master
psfb X X
kelb X X
drydepb accum.
wetdepb accum.
semiss outb accum.
massb X X
metwaterb X X

Noon .noon.nc const noonb X X X Master
metwaterb X
qj X X
qqj X X
qqk X X

Mass .flux.nc mf X X X Master
Flux gmf X X X

amf X X

Qj .qj.nc qj X X X Master
opt depthb Xc X
O3+hv− >O1Db Xc X

Qk .qk.nc qk X X X Master

Qqjk .qqjk.nc qqj X X X Master
qqk X X X
[yda] X X

Restart .rst.nc const X X Master
h2ocond X
pctm2 X

Sad .sad.nc sad X X X Master
hno3cond X X
hno3gas X X
h2oback X X
h2ocond X X
reffsts X X
reffice X X
vfall X X

Tend .tend.nc ncumt X X Master

a Very small subset, i.e., column info at a specific site; one site per file. Note
also that this data is on its own/ different pressure grid.

b Sub-selectable.
c Option can be selected for local noon time output.

Table C.1: General netCDF files.

54 GMI Tutorial

C.2. Output Frequency of NetCDF Files

File Same/Nc Freq Indepen Freq Monthly 1st & 15th Last Step

Col X
Const X X X X
Mass Flux X X X X
Qj X X X X
Qk X X X X
Qqjk X X X X
Noon X X X X
Restart X X X Xa

Sad X X X X
Tend X X X X

a Only if at the end of a met record.

Table C.2: Frequency of netCDF files.

File Namelist Variables

Col
Const pr const
Noon pr noona

Mass Flux pr flux
Qj pr qj
Qk pr qk
Qqjk pr qqjk
Restart pr restart
Sad pr sad
Tend pr tend

a May be automatically set in
the code if some conditions are
met (see Section D.1.6).

Table C.3: Namelist variables to
produce netCDF files.

GMI Tutorial 55

Appendix D

New Features

D.1 Diagnostics

During the model integration, there are several information that are written out but are
not necessarily of interest to the user. For instance, the model saves out surface emission
information for all the species while the user may only need data for emitted species only.

In the latest version of the code, we give the user the flexibility to select (at run time
through namelist variables) the following:

• The set of species for surface emission diagnostics

• The set of species for dry deposition diagnostics

• The set of species for wet deposition diagnostics

• The set of species for tendency diagnostics

• The range of vertical levels for model outputs.

In addition, the noon species concentrations and variables saved around noon time are now
written out in a separate file. All these features are important for at least two reasons:

1. Users will be able to choose species that produce non zero values in the diagnostics,
and they will consider only vertical levels relevant for their expereiments.

2. The sizes of output files will be significantly reduced.

It is important to note that tendency diagnostics are now written out in three
dimensions.

D.1.1 Choice of Species for Surface Emission Diagnostics

To allow the selection of species, two new namelist variables were added:

pr emiss all : if set to T, then information on all the species is written out, otherwise only
information for user specified species is provided (see next variable). This variable
works only if pr surf emiss=T.

56

D.1. Diagnostics

pr emiss rec flag(1:n) : used only if pr emiss all=F.
= 1, species selected
= 0, species not selected.

A sample namelist setting looks like (in the ACTM OUTPUT section):

pr_surf_emiss = T,

.

.

.

pr_emiss_all = F,

pr_emiss_rec_flag(1) = 0,

pr_emiss_rec_flag(4) = 1,

pr_emiss_rec_flag(7) = 1,

pr_emiss_rec_flag(8) = 1,

pr_emiss_rec_flag(9) = 1,

pr_emiss_rec_flag(10) = 1,

pr_emiss_rec_flag(33) = 1,

pr_emiss_rec_flag(41) = 1,

pr_emiss_rec_flag(52) = 1,

pr_emiss_rec_flag(63) = 1,

Remark 11 The script tool list species (see Chapter 7) was written to allow users to
list all the species available.

D.1.2 Choice of Species for Dry Deposition Diagnostics

To allow the selection of species, two new namelist variables were added:

pr drydep all : if set to T, then information on all the species are written out, otherwise
consider only the species provided by the user (see next variable). This variable works
only if pr dry depos=T.

pr drydep rec flag(1:n) : used only if pr drydep all=F.
= 1, species selected
= 0, species not selected.

A sample namelist setting looks like (in the ACTM OUTPUT section):

pr_dry_depos = T,

.

.

.

pr_drydep_all = F,

pr_drydep_rec_flag(1) = 0,

pr_drydep_rec_flag(9) = 1,

pr_drydep_rec_flag(46) = 1,

pr_drydep_rec_flag(53) = 1,

pr_drydep_rec_flag(55) = 1,

pr_drydep_rec_flag(57) = 1,

GMI Tutorial 57

Chapter D. New Features

D.1.3 Choice of Species for Wet Deposition Diagnostics

To allow the selection of species, two new namelist variables were added:

pr wetdep all : if set to T, then information on all the species are written out, otherwise
consider only the species provided by the user (see next variable). This variable works
only if pr wet depos=T.

pr wetdep rec flag(1:n) : used only if pr wetdep all=F.
= 1, species selected
= 0, species not selected.

A sample namelist setting looks like (in the ACTM OUTPUT section):

pr_wet_depos = T,

.

.

.

pr_wetdep_all = F,

pr_wetdep_rec_flag(1) = 0,

pr_wetdep_rec_flag(9) = 1,

pr_wetdep_rec_flag(19) = 1,

pr_wetdep_rec_flag(23) = 1,

pr_wetdep_rec_flag(46) = 1,

D.1.4 Choice of Species for Tendency Diagnostics

Two new namelist variables are introduced to perform this function:

pr tend all : if set to T, then information on all the species is written out, otherwise
only information specific to the species provided by the user is written out (see next
variable). This variable works only if pr tend=T.

pr tend rec flag(1:n) : used only if pr tend all=F.
= 1, species selected
= 0, species not selected.

A sample namelist setting looks like (in the ACTM OUTPUT section):

pr_tend = T,

.

.

.

pr_tend_all = F,

pr_tend_all = F,

pr_tend_rec_flag(1) = 0,

pr_tend_rec_flag(9) = 1,

pr_tend_rec_flag(10) = 1,

pr_tend_rec_flag(19) = 1,

58 GMI Tutorial

D.1. Diagnostics

pr_tend_rec_flag(23) = 1,

pr_tend_rec_flag(46) = 1,

pr_tend_rec_flag(51) = 1,

pr_tend_rec_flag(52) = 1,

pr_tend_rec_flag(53) = 1,

pr_tend_rec_flag(55) = 1,

pr_tend_rec_flag(57) = 1,

pr_tend_rec_flag(82) = 1,

pr_tend_rec_flag(86) = 1,

D.1.5 Choice of Vertical Levels

All 3D variables are currently saved out on all vertical levels when in fact the user only
needs to analyze the output results on specific range levels. At run time, the user can set
the following namelist variables:

pr level all : if set to T, all the vertical levels are considered, otherwise a range (selected
in the next two variables) is used.

k1r gl : First global altitude index for output. Should be at least equal to k1 gl.

k2r gl : Last global altitude index for output. Should be at most equal to k2 gl.

A sample namelist setting looks like (in the ACTM CONTROL section):

pr_level_all = F,

k1r_gl = 3,

k2r_gl = 20,

D.1.6 Noon Variables

Information on many variables at around noon time are saved out in netCDF output file.
We want to provide to users a range of time they wish to save out noon variables and to
write them in a unique file, <problem name>.noon.nc. The variables are:

1. const noon (written out if noon species is set)

2. metwater (written out if do mean=T, noon metwater=T, and pr metwater=T)

3. qj (written out if do mean=T, do noon rate=T, and pr qj=T)

4. qqj (written out if do mean=T, do noon rate=T, and pr qqjk=T)

5. qqk (written out if do mean=T, do noon rate=T, and pr qqjk=T)

Four new namelist variables were added

pr noon : if set to true, the noon output file is created. the file will still be created if the
any of the above conditions is satistfied.

noon species beg time : begin time.

GMI Tutorial 59

Chapter D. New Features

noon species end time : end time.

pr noon period days : noon variable output period.

A sample namelist setting looks like (in the ACTM OUTPUT section):

do_mean = T,

do_noon_rate = T,

pr_metwater = T,

noon_metwater =T,

pr_qj = T,

pr_qqjk = T,

pr_noon = T,

noon_species(25) = 1,

noon_species(44) = 1,

noon_species(52) = 1,

noon_species(53) = 1,

noon_species(56) = 1,

noon_species_beg_time = 7.0d0,

noon_species_end_time = 16.0d0

pr_noon_period_days = -1.0d0

In the above namelist setting, pr noon = T. Therefore the file <problem name>.noon.nc
will be created. It will contain information (between 7am and 4pm) of the variables
const noon mean, metwater mean, qj mean, qqj mean and qqk mean. It is important to
note the following:

1. If do mean=F, the file <problem name>.noon.nc will only have information on const noon.

2. If pr noon is not set at all in namelist file, the code will will automatically set it to
true if one of the following four conditions is true:

• noon species is non zero for at least one specy

• pr metwater=T and noon metwater=T

• pr qj=T and do mean=T and do noon rate=T

• pr qqjk=T and do mean=T and do noon rate=T

3. If pr noon is set to false in the namelist file, then the file <problem name>.noon.nc
will not be created at all regardless of the setting of the other variables.

D.2 Tracer Runs

At run time users can determine if they want to carry out tracer runs. A new namelist
section (ACTM TRAC) was included with the following variables:

tracer opt : integer variable taking two values: 0 for no tracer run and 1 for tracer runs.

efold time : efolding time to be adjusted for different tracers.

60 GMI Tutorial

D.3. Addition of FastJX

&ACTM_TRAC

tracer_opt = 1,

fold_time = 1800.d0 /

D.3 Addition of FastJX

FastJX was incorporated in the code. To run it, three files are needed. Their names are
passed through namelist variables:

cross section file : X-Section quantum yield

rate file : Master rate file

T O3 climatology file : T & O3 climatology.

A sample namelist setting reads

&ACTM_PHOT

phot_opt = 8,

do_clear_sky = T,

uvalbedo_opt = 1,

uvalbedo_init_val = 0.3d0,

cross_section_file = ’jx_spec.dat’,

rate_file = ’rat_JX_combo.d’,

T_O3_climatology_file = ’jx_atms.dat’ /

Note that fastJX is chosen when phot opt=8.

GMI Tutorial 61

Appendix E

Input Namelist Variables

A model run is controlled using a namelist input file named < problem name > .in. The
focus of this section is to describe the variables that constitute the namelist input. We
provide the name of each variable, the default, and a brief description 1.

Variable Name Type Default Value Description

ESM SECTION

problem name C*128 ’gmi test’ The name of the problem to be run.
timer esm I 0 Enables the timing routines for the esm; a value of

1 enables monitoring of the entire esm simulation.
NP actm I 0 A positive value enables the esm package ”actm”

and sets the number of processors for the actm
package to NP actm; to run Gem/Gmimod,
NP actm must always be set to ≥ 1.

oneprcsr I 0 A value of 1 turns the esm into a single processor
code; the default is to run with master and slave.
processors. To run Gem/Gmimod, normally set
to 0 for parallel machines, and to 1 for
non-parallel machines.

day0 I 0 The integer day of the year at time 0.
tbegin days R 0.0 The starting time of the esm simulation (days).
tfinal days R 0.0 The ending time of the esm simulation (days).

ACTM CONTROL SECTION

do ftiming L F Do fine timing?
Processor distribution:
NPI actm I 1 Number of processors in the i direction (longitude).
NPJ actm I 1 Number of processors in the j direction (latitude).
Global dimension info:
gmi nborder I 4 Number of longitude and latitude ghost zones.
i1 gl I 1 Index of first global longitude (no ghost zones).
i2 gl I 72 Index of last global longitude (no ghost zones).
ju1 gl I 0 Index of first global ”u” latitude (no ghost zones).

1This was taken from gem/actm/gmimod/Other/doc/README.namelist

62

jv1 gl I 1 Index of first global ”v” latitude (no ghost zones).
j2 gl I 46 Index of last global ”u&v” latitude

(no ghost zones).
k1 gl I 1 Index of first global altitude (no ghost zones).
k2 gl I 29 Index of last global altitude (no ghost zones).
num species I 1 Number of species.
pr level all L T Should output be done on all the vertical levels?

If pr level all=F, then set k1r gl and k2r gl
k1r gl I 1 First altitude index for output (k1r gl ≥ k1 gl).
k2r gl I 29 Last altitude index for output (k2r gl ≤ k2 gl).
Time:
leap year flag I 0 Leap year flag:

< 0: no year is a leap year
= 0: leap years are determined normally
> 0: every year is a leap year

start hms I 000000 Starting hour/min/sec (HHMMSS).
start ymd I 890101 Starting year/month/day (YYMMDD).
gmi sec R 0.0 Total Gmimod seconds (s).
tdt R 180.0 Model time step (s).
Main transport option:
trans opt I 1 Transport option:

1: do LLNLTRANS transport
2: do UCITRANS transport (non-parallel mode)

loss opt I 0 range 0-1
The loop that accounts startospheric loss
for full chemistry runs is activated when
loss opt = 1

ACTM INPUT SECTION

General input data:
gmi data dir C*80 ’ ’ Directory where input files are located.
hdr var name C*32 ’hdr’ NetCDF header variable name.
hdf dim name C*32 ’hdf dim’ NetCDF header dimension name.
lat dim name C*32 ’latitude dim’ NetCDF latitude dimension name.
lon dim name C*32 ’longitude dim’ NetCDF longitude dimension name.
prs dim name C*32 ’pressure dim’ NetCDF pressure dimension name.
spc dim name C*32 ’species dim’ NetCDF species dimension name.
rec dim name C*32 ’rec dim’ NetCDF record dimension name.
tim dim name C*32 ’time dim’ NetCDF time dimension name.
Met data:
met opt I 3 Met input option:

1: use values fixed in code for u, v, ps, kel;
no other data set

2: read in a minimal set of met data:
u, v, ps, & kel; no other data set

3: read in a full set of met data.
met grid type C ’A’ Met grid type:

’A’: use A grid (DAO, NCAR(CCM))
’C’: use C grid (GISS)

mdt R 21600.0 Time increment for reading new met data;

GMI Tutorial 63

Chapter E. Input Namelist Variables

must be a multiple of tdt (s).
do cycle met L F When the last met input file has been read,

should the code cycle back and continue with
the first file again?

do timinterp met L T Should the met fields, except the winds, be time
interpolated?

do timinterp winds L T Should the wind fields be time interpolated? Note
that pressure fields are always interpolated.

do wind pole L F When met opt = 1, should the transport be over
the poles or around the equator?

met infile num I 1 Index of NetCDF file to start reading met input
data from.

mrnum in I 1 NetCDF file record to start reading met data from.
tmet1 R 0.0 Time tag of the mrnum in (s).
do read met list L F Should the met file names be read in from

met filnam list?
met filnam list C*80 ’met filnam list.in’ Name of file to get names of met input files from.

Note that currently this file must reside in the
same directory that you are running the gem
executable from.

met infile names() C*128 ’ ’ An array of met input file names
(list may be used instead).

Species (i.e., ”const”) input data:
Base const units = mixing ratio
const opt I 2 Const input option:

1: set const values to const init val
2: read in const values
3: solid body rotation
4: dummy test pattern with linear slope in each
dimension

5: exponential in vertical (decays with height)
6: sin in latitude (largest at equator)
7: linear vertical gradient
8: sin in latitude (largest at equator) +
vertical gradient

mw() R 0.0 Array of species’ molecular weights (g/mol).
const init val() R 1.0d-30 When const opt = 1, this array of values will be

used to initialize each const species (note that if a
negative const init val() marker is set in the
namelist input file, all of the const init val’s
from the negative value on will be set to the value
preceding the negative value).

const infile name C*128 ’ ’ Constituent input file name.
const var name C*32 ’const’ NetCDF constituent variable name.
const labels() C*24 ’ ’ Constituent string labels.
fixed const timpyr I 12 Fixed const times per year:

1: one set of emissions per year (yearly)
12: twelve sets of emissions per year (monthly)

fixed const map() I 0 Mapping of fixed const number to const species
number.

64 GMI Tutorial

fixed const infile name C*128 ’ ’ Fixed const input file name.
io3 num I 0 Index of ozone constituent.

ACTM OUTPUT SECTION

ASCII output:
Terminal screen output:
pr diag L F Print some diagnostic output to screen?
pr time L T Should the time be printed to the terminal screen

each time step (if false, will still get time
output to the screen at the end of each day)?

Namelist file output:
pr nl L F Should all the namelist variables be

written to a file (problem name.nl)?
Species/Mass ASCII file output:
pr ascii L T Should the ASCII output file be written at all?
pr ascii1 L T Should the first section of the ASCII output

file be written (the mass data)?
pr ascii2 L F Should the second section of the ASCII output

file be written (the species concentration data)?
pr ascii3 L T Should the third section of the ASCII output file

be written (the species concentration min/maxs)?
pr ascii4 L F Should the fourth section of the ASCII output file

be written (total mass of each species)?
pr ascii5 L F Should the fifth section of the ASCII output file be

written (total production and loss of each species)?
ascii out n I 1 Single species index to use.
ascii out i I 1 Longitude index to use in the second section.
pr ascii step interval I 1 Interval for ASCII output:

> 0: ASCII output at specified step interval
= −1: ASCII output at monthly intervals

SmvgearII file output:
pr smv2 L F Should the SmvgearII output file be written

(non-parallel mode only)?
General NetCDF output:
pr netcdf L T Should any of the periodic output files be

written at all?
pr const L T Should the periodic species concentrations

output file be written?
pr psf L F Should the surface pressures also be written to

the periodic const output file?
pr kel L F Should the temperatures also be written to the

periodic const output file?
pr mass L F Should the mass also be written to the periodic

const output file?
pr metwater L F Should the meteorological water also be

written to the periodic const output file?
pr dry depos L F Should the dry depositions also be written to

the periodic const output file?
pr wet depos L F Should the wet depositions also be written to

GMI Tutorial 65

Chapter E. Input Namelist Variables

the periodic const output file?
pr surf emiss L F Should the surface emissions also be written to

the periodic const output file?
pr flux L F Should the periodic flux diagnostics output

file be written?
pr qj L F Should the periodic qj output file be written?
pr qj o3 o1d L F Should the special reaction O3→O1D

be saved with the qj’s?
pr qj opt depth L F Should the optical depth be saved with the qj’s?
pr qk L F Should the periodic qk output file be written?
pr qqjk L F Should the periodic qqjk output file be written?
pr sad L F Should the periodic sad output file be written?
pr tend L F Should the periodic tendency diagnostics output

file be written?
pr const all L T Should all of the species concentrations be

written to the periodic const output file?
do mean L F Should means or current values be put in the

periodic output files?
do noon rate L F Should photolysis rate constants be calculated at

local Noon?
do qqjk inchem L F If pr qqjk is on, should qqj’s & qqk’s be

determined inside the chemistry solver, or
outside?

noon metwater L F Should the metwater be calculated at local noon?
flux var name C*8 ’mf’ NetCDF flux variable name.
noon species(1:n) I 0 If non-zero and do mean is on, then only

accumulate information on this species at around
local Noon by default (11:00 - 13:00) or between
noon species beg time and noon species end time.

noon species beg time R*8 11.d0 Beginning time for noon species
constituent concentration.

noon species end time R*8 13.d0 Ending time for noon species
constituent concentration.

pr const rec flag(1) I 1 Should species #1 be written to the
const output file (0=no, 1=yes)?

pr const rec flag(2:n) I 0 Should species #n be written to the
const output file (0=no, 1=yes)?
Note that pr const rec flag only used if
pr const all is false. Note that pr const rec flag
is also used to determine the species written to
dry depos and wet depos and the flux file

pr nc period days R 1.0 NetCDF output period:
> 0.0: periodic output at specified interval (days)
−1.0: periodic output at monthly intervals
−2.0: periodic output on 1st & 15th of each month

pr emiss all L T Should all the surface emissions be written to the
periodic const output file? If set to F and
pr surf emiss=T, then specify pr emiss rec flag.

pr emiss rec flag(1:n) I 0 Should species #n surf emiss diagnostic be written
the const output file (0=no, 1=yes)?

66 GMI Tutorial

pr drydep all L T Should all the dry depositions be written to the
periodic const output file? If set to F and
pr dry depos=T, then specify pr drydep rec flag.

pr drydep rec flag(1:n) I 0 Should species #n dry dep diagnostic be written
to the const output file (0=no, 1=yes)?

pr wetdep all L T Should all the wet depositions be written to the
periodic const output file? If set to F and
pr wet depos=T, then specify pr wetdep rec flag.

pr wetdep rec flag(1:n) I 0 Should species #n wet dep diagnostic be written
to the const output file (0=no, 1=yes)?

pr tend all L T Should periodic tendency diagnostics output file
be written for all the species? If set to F and
pr tend=T, then specify pr tend rec flag.

pr tend rec flag(1:n) I 0 Should species #n tendency diagnostic be written
to the tendency output file (0=no, 1=yes)?

Column diagnostic NetCDF output:
col diag num I 0 Number of column diagnostic sites.
col diag period R 3600.0 Column diagnostics output period (s).
col diag site() C*24 ’ ’ Names of site locations for column diag.
col diag species(1) I 1 Should species be included in column diag.?
col diag species(2:n) I 0
col diag pres(1:10) R 1000.0, 900.0, ... , 100.0 Pressure levels for column diag. (mb).
col diag lat lon(2,n) I 0.0 Lat/Lon location of each column diag. site.

ACTM RESTART SECTION

pr restart L F Should a restart file be written?
do overwrt rst L T Should the restart file be over-written?
pr rst period days R 7.0 Restart output period:

> 0.0: restart output at specified interval (days)
−1.0: restart output at monthly intervals
−2.0: restart output on 1st & 15th of each month

rd restart L F Should a restart file be read?
restart infile name C*128 ’gmi.rst.nc’ Name of restart input file; note that

currently this file must reside in the
same directory that you are running the
gem executable from.

restart inrec I last record # in rst file Record number in restart (rst) input
file to read from.

ACTM ADVEC SECTION (advection)

advec opt I 1 Advection option:
0: no advection
1: do DAO2 advection

press fix opt I 1 Pressure fixer option:
0: no pressure fixer used
1: LLNL pressure fixer used (Cameron-Smith)
2: UCI pressure fixer used (Prather)

pmet2 opt I 1 pmet2 option:
0: use pmet2
1: use (pmet2 - ”global mean change in surface

GMI Tutorial 67

Chapter E. Input Namelist Variables

pressure”)
advec consrv opt I 2 Advection conserve option:

0: conserve tracer conc.; use pmet2
1: conserve tracer mass; use pmet2
2: conserve both tracer conc. & mass; use pctm2
Note that if press fix opt = 0 &
advec consrv opt = 2, the code will
generate an error and exit.

advec flag default I 1 Set all species to do advection or not to
do advection as the default; can then use
advec flag turn individual species either off,
if the default is on; or on, if the default is off:
0: do not advect any species as default
1: advect all species as default

advec flag() I advec flag default An array of flags that indicate whether
or not to advect a given species;
if not explicitly set for a particular species,
advec flag default is used:
0: no transport
1: transport

j1p I 3 Determines size of the Polar cap;
j2p = j2 gl - j1p + 1

do grav set L F Should gravitational settling of aerosols be done?
do var adv tstp L F Should variable advection time steps be taken as

determined by the Courant condition?

ACTM CONVEC SECTION (convection)

Base convection units = kg/m2*s
convec opt I 0 Convection option:

0: no convection
1: do DAO2 convection
2: do NCAR convection

ACTM DEPOS SECTION (deposition)

Base deposition units = m/s
do drydep L F Should dry deposition be done?
do wetdep L F Should wet deposition be done?
do simpledep L F Should simple deposition be done?
num ks sdep I 1 Number of vertical layers to apply 2 day loss

factor to in simple deposition.
wetdep eff() R 0.0 Wet deposition (scavenging) efficiencies;

should be set to values between
0.0 and 1.0 for each species.

ACTM DIFFU SECTION (diffusion)

diffu opt I 0 Diffusion option:
0: no diffusion
1: do DAO2 vertical diffusion

vert diffu coef R 0.0 Scalar vertical diffusion coefficient (m2/s).
pbl mixing tau R 3600.0 Sets PBL mixing time which is needed

for GISS runs. At present we use 18000.0.
It influences the range of diffu opt

68 GMI Tutorial

which is now 0-2.

ACTM EMISS SECTION (emissions)

Base emissions units = kg/s
emiss opt I 0 Emissions option:

0: no emissions
1: do LLNL emissions only
2: do LLNL + Harvard emissions

emiss in opt I 0 Emissions input option:
0: no emissions data
1: set all emiss values to emiss init val
2: read in emiss values

emiss conv flag I 0 Emissions conversion flag:
0: no conversion performed
1: use scalar emiss conv fac
(scalar * kg/s => kg/s)

2: use calculated emissions conversion factor
(kg/km2*hr => kg/s)

semiss inchem flag I -1 Surface emissions inside chemistry flag:
< 0: If emissions are on, surface emissions will be
done in Smvgear chemistry if it is on;
outside of chemistry if Smvgear chemistry is off.

= 0: If emissions are on, surface emissions will be
done outside of chemistry.

> 0: If emissions are on, surface emissions will be
done in Smvgear chemistry.

emiss timpyr I 1 Emission times per year:
1: one set of emissions per year (yearly)
12: twelve sets of emissions per year (monthly)

emiss map() I 0 Mapping of emission number to const species
number; note that it is permissable to map a
species in the emissions file to 0, and then
the code will not read in or use that chunk of
data. Since the default is 0 for all species,
it is not necessary to specify the species you
want to skip, just the ones you want to use.

emiss conv fac R 1.0 Emission conversion factor when
emiss conv flag = 1.

emiss init val R 1.0 When emiss opt = 1, this value will be used to
initialize all emissions values.

emiss infile name C*128 ’ ’ Emissions input file name.
emiss var name C*32 ’emiss’ NetCDF emission variable name.
Harvard biogenic & soil emissions:
isop scale() R 1.0d0 Isoprene scaling factors for each month.
Note that if ((emiss opt == 2) && do full chem), the
indices below will be automatically set by the setkin files.
iacetone num I 0 Const array index for acetone (C3H6O) (ACET).
ico num I 0 Const array index for CO.
iisoprene num I 0 Const array index for isoprene (C5H8) (ISOP).
ipropene num I 0 Const array index for propene (C3H6) (PRPE).

GMI Tutorial 69

Chapter E. Input Namelist Variables

ino num I 0 Const array index for NO.
fertscal infile name C*128 ’fertscale 4x5 dao.asc’ Fertilizer scale infile name.
lai infile name C*32 ’lai 4x5 dao.asc’ Leaf area index infile name.
light infile name C*128 ’lighttable.asc’ Light infile name.
precip infile name C*128 ’precip 4x5 dao.asc’ Precipitation infile name.
soil infile name C*128 ’soiltype.asc’ Soil type infile name.
veg infile name C*128 ’vegtype 4x5 dao.asc’ Vegetation type infile name.
isopconv infile name C*128 ’isopconvtable.asc’ Isoprene conversion infile name.
monotconv infile name C*128 ’monotconvtable.asc’ Monoterpene conversion infile name.
Michigan aerosol and dust emissions:
emiss aero opt I 0 0, 1; 0 for no michigan aerosol emissions.
naero I 0 number of aerosol emissions.
emiss map aero() I 0 map aerosol emissions to species #.
emiss aero infile name C*128 ’ ’ Name of file containing michigan aerosol emissions.
emiss dust opt I 0 0,1; 0 fo no michigan dust emissions.
ndust I 0 number of dust emissions.
nst dust I 1 number of starting point in time for michigan

dust emissions.
nt dust I 1 number of times of dust emissions per michigan

dust emissions file.
emiss map dust() I 0 map dust emissions to species #.
emiss dust infile name C*128 ’ ’ Name of file containing michigan dust emissions.

ACTM CHEM SECTION (chemistry)

chem opt I 0 Chemistry option:
0: no chemistry (age of air, etc.)
1: call Radon/Lead chemistry
2: call SmvgearII
3: call simple loss (N2O, etc.)
4: call forcing boundary condition for a tracer
(CO2, etc.)

5: call Synoz tracer
(if num species=1 then just Synoz,
if num species=2 then Nodoz tracer is species
number 2)

6: call Beryllium chemistry
7: call Quadchem
8: call Sulfur chemistry

chem cycle R 1.0 Number of time steps to cycle chemistry calls on:
< 1.0: chemistry will subcycle
= 1.0: chemistry called each time step

chem mask klo I k1 gl Lowest grid level at which chemistry is calculated.
chem mask khi I k2 gl Highest grid level at which chemistry is calculated.
synoz threshold R Huge Chemistry turned off where synoz > this

threshold (mixing ratio).
t cloud ice R 263.0 Temperature for cloud ice formation.
do chem grp L F Should chemical groups be used?
do smv reord L F Should the grid boxes be reordered in order of

stiffness?

70 GMI Tutorial

do wetchem L F Should wet chemistry be done?
Be-7/Be-10 chemistry:
be opt I 1 Beryllium star table option:

1: use Koch table for Be-7 and Be-10
2: use Nagai tables for Be-7 and Be-10

t half be7 R 53.3d0 Half life of Beryllium-7, or other cosmogenic
radionuclide (days).

t half be10 R 5.84d8 Half life of Beryllium-10, or other cosmogenic
radionuclide (days).

yield be7 R 4.5d-7 Yield factor for Beryllium-7, or other cosmogenic
radionuclide (unitless).

yield be10 R 2.5d-7 Yield factor for Beryllium-10, or other cosmogenic
radionuclide (unitless).

Base forcing boundary condition units = mixing ratio
forc bc opt I 1 Forcing boundary condition option:

1: set all forc bc values to forc bc init val
2: read in forc bc
3: calculate forc bc

fbc j1 I ju1 gl Forcing boundary condition j1 (low latitude).
fbc j2 I j2 gl Forcing boundary condition j2 (high latitude).
forc bc years I 1 Number of years of forcing data.
forc bc start num I 1 Forcing boundary condition start number;

index for year to use.
forc bc kmin I 1 Minumum k level for forcing boundary condition.
forc bc kmax I 1 Maximum k level for forcing boundary condition.
forc bc map() I 0 Mapping of forcing boundary condition number

to const species number.
forc bc init val R 0.0 When forc bc opt = 1, this value will be used to

initialize all forc bc values (ppmv).
forc bc incrpyr R 0.3 Forcing boundary condition emission increase

per year.
forc bc lz val R 0.0 Value to which lower zones are forced.
forc bc infile name C*128 ’forc bc co2.asc’ Forcing boundary condition input file name.
Base simple loss units = s−1

loss freq opt I 1 Loss frequency option:
1: set all loss freq values to loss init val
2: read in loss data
3: use NCAR loss

kmin loss I k1 gl Minimum vertical index at which loss will occur;
currently, below this altitude a constant boundary
condition is enforced using const init val
for all species.

kmax loss I k2 gl Maximum vertical index at which loss will occur.
loss init val R 0.0 When loss freq opt = 1, this value will be used to

initialize all loss freq values.
loss data infile name C*128 ’loss n2o.asc’ Loss data input file name.
Surface Area Density (SAD):
sad opt I 0 Surface area density (SAD) option:

0: do not allocate or process SAD array

GMI Tutorial 71

Chapter E. Input Namelist Variables

1: allocate, but zero out SAD array
2: call Considine code (i.e., Condense)
3: read SAD array from a file of monthly averages

sad var name C*32 ’sad’ NetCDF sad variable name.
sad dim name C*32 ’sad dim’ NetCDF sad dimension name.
h2oclim opt I 2 Water climatology input option:

1: set all h2oclim values to h2oclim init val
2: read in h2oclim

h2oclim timpyr I 12 Water climatology times per year
1: yearly
12: monthly

ch4clim init val R 0.0 When h2oclim opt = 1, this value will be used
to initialize all ch4clim

h2oclim init val R 0.0 When h2oclim opt = 1, this value will be used
to initialize all h2oclim values.

h2oclim infile name C*128 ’ ’ Water climatology input file name.
lbssad opt I 2 Liquid binary sulfate input option:

1: set all lbssad values to lbssad init val
2: read in lbssad

lbssad timpyr I 12 Liquid binary sulfate times per year:
1: yearly
12: monthly

lbssad init val R 0.0 When lbssad opt = 1, this value will be used
to initialize all lbssad values.

lbssad infile name C*128 ’ ’ Liquid binary sulfate input file name.
qk / qqk:
qk var name C*32 ’qk’ NetCDF qk variable name.
qqk var name C*32 ’qqk’ NetCDF qqk variable name.
qk dim name C*32 ’qk dim’ NetCDF qk dimension name.
qqk dim name C*32 ’qqk dim’ NetCDF qqk dimension name.
Reaction rate adjustment:
do rxnr adjust L F Adjust reaction rates?
rxnr adjust infile name C*128 ’ ’ Reaction rate adjustment input file name.
rxnr adjust var name C*32 ’reac rate adj’ NetCDF reaction rate adjustment variable name.

ACTM PHOT SECTION (photolysis)

Base photolysis/qj units = s−1

phot opt I 1 Photolysis option:
0: no photolysis
1: set all qj values to qj init val
2: read in qj values
3: use fastj routine (troposphere only for now)
4: lookup table for qj (Kawa style)
5: lookup table for qj (Kawa style) + use
ozone climatology for column ozone calc.

6: calculate from table and Gmimod data
(Quadchem)

7: read in qj values (2-D, 12 months)
8: use fastjx

do clear sky L T Should clear sky photolysis be done?

72 GMI Tutorial

fastj offset sec R 0.0d0 Offset from model time at which to do fastj (s).
qj init val R 1.0d-30 When phot opt = 1, this value will be used

to initialize all qj values.
qj infile name C*128 ’ ’ qj input file name.
qj var name C*32 ’qj’ NetCDF qj variable name.
qqj var name C*32 ’qqj’ NetCDF qqj variable name.
qj dim name C*32 ’qj dim’ NetCDF qj dimension name.
qqj dim name C*32 ’qqj dim’ NetCDF qqj dimension name.
Surface albedo:
sfalbedo opt I 0 Surface albedo option:

0: no sfalbedo
1: set each type of sfalbedo to an intial value
2: read in monthly sfalbedo values from a
NetCDF file

3: read in values of four types of surface albedo
from the met data

saldif init val R 0.1 Surface albedo for diffuse light (near IR);
when sfalbedo opt = 1, this value will be used
to initialize all saldif values.

saldir init val R 0.1 Surface albedo for direct light (near IR);
when sfalbedo opt = 1, this value will be used
to initialize all saldir values.

sasdif init val R 0.1 Surface albedo for diffuse light (uv/vis);
when sfalbedo opt = 1, this value will be used
to initialize all sasdif values.

sasdir init val R 0.1 Surface albedo for direct light (uv/vis);
when sfalbedo opt = 1, this value will be used
to initialize all sasdir values.

sfalbedo infile name C*128 ’ ’ Surface albedo input file name.
UV albedo:
uvalbedo opt I 0 UV albedo option:

0: no uvalbedo
1: set all uvalbedo values to uvalbedo init val
2: read in monthly uvalbedo values from an
ASCII file

3: read in bulk surface albedo values from the
met data

uvalbedo init val R 0.1 When uvalbedo opt = 1, this value will be used
to initialize all uvalbedo values.

uvalbedo infile name C*128 ’ ’ Uvalbedo input file name.
cross section file C*128 ’ ’ X-Section quantum yield
rate file C*128 ’ ’ Master rate file
T O3 climatology file C*128 ’ ’ T & O3 climatology

ACTM TRAC SECTION (tracer)

tracer opt I 0 range 0-1
efold time R 0.0 should be adjusted for different tracers in

tracer runs

Table E.1: Namelist variables

GMI Tutorial 73

Chapter E. Input Namelist Variables

74 GMI Tutorial

